
Chapter 27: Design Patterns 

 

Introduction 

In the field of software engineering, a Design Pattern is a general repeatable solution to a 
commonly occurring problem in software design. It is not a finished design that can be directly 

transformed into code, but rather a template or blueprint that can be used in many different 
situations to solve recurring design issues. 

Design patterns help software developers: 

• Speed up the development process. 

• Promote code reuse and maintainability. 

• Improve communication through a shared vocabulary. 

• Apply proven and tested solutions. 

This chapter delves deep into the types of design patterns, their classification, and real-world 

use cases, providing a comprehensive understanding suitable for advanced programming and 
enterprise-level software design. 

 

27.1 History and Origins of Design Patterns 

• Originated in architecture by Christopher Alexander in the 1970s. 

• Introduced to software engineering by the Gang of Four (GoF) – Erich Gamma, Richard 
Helm, Ralph Johnson, and John Vlissides – in their seminal book “Design Patterns: 

Elements of Reusable Object-Oriented Software” (1994). 

• GoF categorized 23 patterns into three groups: Creational, Structural, and Behavioral. 

 

27.2 Benefits of Using Design Patterns 

• Reusability: Patterns provide time-tested solutions. 

• Maintainability: Cleaner code structure and easier updates. 

• Scalability: Easy to extend functionalities. 

• Loose Coupling: Encourages modular and decoupled systems. 

• Best Practices: Encourages consistent, industry-standard development. 

 

27.3 Classification of Design Patterns 

Design patterns are broadly classified into three categories: 



1. Creational Patterns 

Deal with object creation mechanisms, trying to create objects in a manner suitable to the 
situation. 

• 27.3.1 Singleton Pattern Ensures a class has only one instance and provides a global 

point of access to it. Use Case: Configuration objects, logging, thread pools. 

• 27.3.2 Factory Method Pattern Defines an interface for creating an object but lets 
subclasses alter the type of objects that will be created. Use Case: GUI libraries, 
frameworks requiring interchangeable components. 

• 27.3.3 Abstract Factory Pattern Provides an interface for creating families of related or 

dependent objects without specifying their concrete classes. Use Case: Theme or skin 
factories in GUI apps. 

• 27.3.4 Builder Pattern Separates the construction of a complex object from its 

representation. Use Case: Creating objects with multiple configurations (e.g., a meal, a 
document, or a house). 

• 27.3.5 Prototype Pattern Creates new objects by copying an existing object, known as 

the prototype. Use Case: Game development (cloning characters), prototyping 
expensive objects. 

 

2. Structural Patterns 

Concerned with the composition of classes and objects. 

• 27.3.6 Adapter Pattern Allows incompatible interfaces to work together. Use Case: 

Legacy code integration, plugin systems. 

• 27.3.7 Bridge Pattern Decouples an abstraction from its implementation so that the two 
can vary independently. Use Case: Device-driver systems, UI abstraction. 

• 27.3.8 Composite Pattern Composes objects into tree structures to represent part-

whole hierarchies. Use Case: File system representation, GUI elements. 

• 27.3.9 Decorator Pattern Adds behavior to objects dynamically without altering their 
structure. Use Case: GUI components (scrollbars, borders), I/O streams. 

• 27.3.10 Facade Pattern Provides a simplified interface to a complex subsystem. Use 

Case: Libraries, frameworks with multiple subsystems. 

• 27.3.11 Flyweight Pattern Reduces memory usage by sharing common parts of objects 
instead of duplicating them. Use Case: Text rendering, object pools in games. 



• 27.3.12 Proxy Pattern Provides a surrogate or placeholder for another object to control 

access to it. Use Case: Remote proxies, virtual proxies, protection proxies. 

 

3. Behavioral Patterns 

Focus on communication between objects. 

• 27.3.13 Chain of Responsibility Pattern Passes a request along a chain of handlers until 

one handles it. Use Case: Event handling systems, middleware. 

• 27.3.14 Command Pattern Encapsulates a request as an object, allowing 

parameterization of clients. Use Case: Undo-redo systems, transactional systems. 

• 27.3.15 Interpreter Pattern Defines a grammar and provides an interpreter to interpret 

sentences of the grammar. Use Case: SQL interpreters, expression evaluation. 

• 27.3.16 Iterator Pattern Provides a way to access the elements of an aggregate object 

sequentially. Use Case: Collection libraries, data traversals. 

• 27.3.17 Mediator Pattern Encapsulates how a set of objects interact. Use Case: Chat 
applications, component decoupling. 

• 27.3.18 Memento Pattern Captures and restores an object’s internal state without 

violating encapsulation. Use Case: Save/restore functionality in games. 

• 27.3.19 Observer Pattern Defines a one-to-many dependency between objects so that 
when one object changes state, all its dependents are notified. Use Case: UI event 

handling, stock market feeds. 

• 27.3.20 State Pattern Allows an object to alter its behavior when its internal state 

changes. Use Case: TCP connection states, UI form state changes. 

• 27.3.21 Strategy Pattern Enables selecting an algorithm at runtime. Use Case: Sorting 

strategies, compression strategies. 

• 27.3.22 Template Method Pattern Defines the program skeleton in a method but lets 
subclasses override specific steps. Use Case: Frameworks, algorithm structures. 

• 27.3.23 Visitor Pattern Separates an algorithm from the object structure it operates on. 

Use Case: Compilers, document processing. 

 

27.4 Choosing the Right Pattern 

When choosing a design pattern, consider: 



• Problem type: Creation, structure, or behavior? 

• Reusability: Does the solution need to be reused in multiple parts? 

• Maintainability: Will this pattern make future updates easier? 

• Coupling: Can it reduce direct dependency between classes? 

 

27.5 Anti-Patterns 

While design patterns provide best practices, anti-patterns are common but ineffective or 
counterproductive solutions. Examples include: 

• God Object – An object that knows too much or does too much. 

• Spaghetti Code – Code with a complex and tangled control structure. 

• Lava Flow – Code that remains due to fear of breaking other parts. 

 

27.6 Real-World Examples of Design Patterns 

Use Case Pattern Used 

Logging system Singleton 

UI toolkit (e.g., JavaFX) Observer, Composite 

Database connection pool Factory, Singleton 

Document editor (undo/redo) Memento, Command 

File system tree Composite 

Payment strategy in apps Strategy 

Web frameworks (Spring MVC) Facade, Dependency Injection (not GoF, but related) 

 

27.7 Best Practices and Pitfalls 

✅ Best Practices 

• Understand the problem domain before selecting a pattern. 

• Use patterns to enhance clarity, not to show off. 

• Document the intent of pattern usage for future developers. 

❌ Pitfalls 

• Overusing patterns: Leads to unnecessary complexity. 

• Misapplying patterns: Can result in rigid or hard-to-maintain code. 

• Ignoring alternatives: Patterns are not always the best or only solution. 

 



Summary 

Design patterns are vital tools in the advanced programmer’s toolkit. They represent proven, 

reusable solutions to common design challenges in software engineering. By learning and 

applying the appropriate pattern at the right time, developers can write cleaner, more 

maintainable, and scalable code. 

Understanding design patterns not only enhances your architectural thinking but also helps you 
align with industry best practices, especially when working on large-scale or team-based 
projects. 

 


