
Design and Analysis of Algorithms, Chennai Mathematical
Institute

Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week – 02

Module – 02

Lecture - 10

Searching in an array

Let us look at the problem of searching for a value in an array.

(Refer Slide Time: 00:05)

So, in general the search problem is to find whether a value K is present, present in a

collection of values A and in our case we will think of A is generally as a sequence of

values. And moreover, we also assume that the sequence is something like integers,

where we can talk of one value being less than another value. So, the values can be

ordered with each other. So, we have already saw that we can keep such sequences in

two different ways, as a arrays and as lists.

And depending on whether we keep it as an arrays or list, the way we can access the

elements is different. So, the first question we might ask is, whether searching makes a

difference in a list verses an array and the second question we might ask is, is there some

importance to how the values are arranged in the sequence, does it help if they are in

ascending or descending order or it does not matter. It is equally the same to search for

something in a randomly ordered collection of values or when it is structured in some

particular way.

83

(Refer Slide Time: 01:03)

So, in the unsorted case we have no choice basically, we have a sequence A which runs

from 0 to n minus 1. So, we must look at all the values, because we have no idea where

K maybe. So, systematic way to do it is to start with the position 0 and just scan all the

way to n minus 1. So, we have this loop here, which scans and this scan either terminates

when you reach the end without finding it or when at some position i we find that A i is

equal to K.

And then depending on that we either say that it is found, in which case we return the

position or we have reached i equal to n, which means we are gone beyond A n minus 1

and so, we return naught 1, minus 1 which is a invalid position indicate that it is not

found.

84

(Refer Slide Time: 01:53)

So, we saw before that the worst case actually happens when K is not an element of A, K

does not come in A, we have to scan A 0 to A n minus 1 in order to determine the case

not that. Because, we have no evidence in advance which position is likely to be. So, this

means that in the worst case searching for an element and non sorted array takes linear

type. And of course, it does not matter now whether it is an array or a list, because in a

list we could also linear times start from the first element and follow the links all the way

to the end, in an array we start with A 0 and go all the way to A n minus 1, both of them

take linear time.

(Refer Slide Time: 02:29)

On the other hand if the sequence is sorted and in particular if it is an array, we can be a

85

little more intelligent. So, what we know is that the values are assigned in ascending

order. So, if you probe the value in the middle and check is this equal to K, if the value

that we have is equal to K of course, we have found it. If it is smaller than the value here,

then we only need to search this half, and if it is larger than we need to search in this

half.

Now, this is something that we intuitively do all the time, this is how we look for say

words in a dictionary or when we play 20 questions, we try to ask questions about the

age of a person, when you says this person less than 40, this person does not greater than

65 and so, on. So, this is something we know intuitively, but we can formalize. So, we

take the midpoint of the range we are searching for. If the midpoint is a value that we

want we found it; otherwise, we depending on the value we are looking for and what the

value is that midpoint, we search either the bottom half or the top half. So, this has a

name which many of you may already know, this is called binary search.

(Refer Slide Time: 03:38)

So, here is a simple recursive algorithm for binary search. So, in general it searches an

array, remember that when we do the search we might be searching different segments

depending on how far we progress the search. So, in general binary search takes a value

K to search an array and two end points, left and right and just to make sure that we get a

everything right, you will have the convention that it searches from the index l to the

index r minus 1, let me searches from l to r, but not including r itself.

So, now if l and r are actually the same, then we have an empty array, because l to r

86

minus 1 is actually something that there are no elements in the fields. So, we say we have

not found it. So, when the interval that we are searching for becomes empty, the array

definitely does not contain the value ((Refer Time: 04:27)). Otherwise, we compute the

midpoint between l and r by taking the sum and dividing by 2 and because this might be

an odd number, we use integer division.

Now, we examine at this point we are found the midpoint. So, now, we examine if the

value that we want is there at the midpoint, if. So, we return true. Otherwise, if the value

that we want to smaller than the midpoint, then we go to the left and the value that we

want is bigger than the midpoint, then we go to the right. So, this either goes from left to

mid minus 1 or mid plus 1 to right.

In other words we exclude mid from our search. So, this, the first case runs the search

from left to mid minus 1 because that is our assumption, we call it to mid, it goes to mid

minus 1. This one starts at mid plus 1 and goes to right minus 1. So, the original thing

was from left to right minus 1 and we have now excluded mid from this and we have

also have the entire bit to search.

(Refer Slide Time: 05:25)

So, the crucial advantage of binary search is that each step we have the interval to search

and at some point we will reach 1 and then when we have 1, we will get an interval of

size 0 and so, we will get an immediate answer. So, we can write as we saw for such

recursive functions, we can write what is called a recurrence. Recurrence is just an

expression for the time, in terms of smaller values with same expression.

87

So, the base case is that when we have T of n we mean the time taken to search in a list

or an array actually of size n. So, T of 0 is 1. So, if we have an empty array we have

nothing to do and T of n in general is 1 step to find and compare. So, this one is actually

a constant number of steps to compare with the midpoint and decide to go up, down and

all that. So, those operations plus the time taken to search which the half we focus on, the

left half and right half. Remember, that we look at the left half, we never going to look at

the right half, you can.

(Refer Slide Time: 06:25)

So, one way to solve such recurrence is to unwind it. So, we have T n is 1 plus T n by 2.

So, we take n by 2 and we do n by 2 divided by 2 and rather than write it is as n by 4 we

write is as n by 2 square. And this is because now, if I do one more time it will be 1 plus

1 plus 1 divided by 2 cube and so, on. So, in general you can see that if I do it k times

then I am going to have k 1's here, if I do 3 times I have 1 plus 1 plus 1 plus T n by 2 to

3, 4 or 4 plus T n by 2 and so, on.

So, after k steps I have k plus T of n by 2 to the k, now when n by 2 to the k comes 1 at

the next step I am going to get T of 0. So, when does this become 1, when n is 2 to the k

in other words when k is log 2 of n. So, when I get log 2 of n, then this become T of 1

and at the next step this is going to become 1 plus T of 0. So, this is going to be log n 1s

and so, over all the complexity of binary search is just order of log n. So, we are

compromise a linear search in the case of unsorted array to a logarithmic search in the

case of a sorted array.

88

(Refer Slide Time: 07:50)

So, we mentioned in the previous unit about arrays and list that, things that work on list

may not work on arrays and vice versa. So, here is an example of something it works

only for arrays. The idea of looking up the midpoint and then going left works only, if

you can find the midpoint constant time, if you have to spend time looking for the

constant for the midpoint, then you cannot get this recurrence anymore which not going

to be 1 plus T of n by 2, but it is going to be n plus T of n by 2 plus here n by 2 and then

we will actually get a linear.

So, binary search for a list will actually turn out be linear, because of the time it takes us

to go to the midpoint. So, this works only for arrays, but really the remarkable thing

about binary search is that by only looking at a very small fraction of sequence, we can

conclude that an element is not present. So, we know for instance that 2 to the n, 2 to the

10 is 1024.

So, if I give you 1000 values, we can look at 10 or maybe 11 and say that something is

not there. So, we overwhelming number or values we do not even have to look at in

order to decide whether a value is there or not and this makes binary search to be

remarkable procedure, if you think about it here.

89

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

