
Chapter 13: Convolution Theorem

13.1 Introduction
The Convolution Theorem is a powerful result in the theory of Fourier
Transforms and Laplace Transforms. It simplifies the process of evaluating the
transform of a product of two functions. In the context of engineering, especially
Civil Engineering, it is particularly useful for solving linear systems, integral
equations, and differential equations encountered in structural analysis, fluid
flow, heat transfer, and vibration problems.

Before diving into the theorem itself, it's important to understand the idea of
convolution, its definition, and how it interacts with transformation techniques
such as the Laplace Transform and Fourier Transform.

13.2 Definition of Convolution
Let f(t) and g(t) be two piecewise continuous functions defined for t ≥ 0. The
convolution of f and g, denoted by (f ∗ g)(t), is defined as:

(f ∗ g)(t) =
∫ t

0
f(τ)g(t − τ) dτ

This definition is symmetric in f and g, meaning:

(f ∗ g)(t) = (g ∗ f)(t)

Interpretation:

Convolution blends two functions such that one is flipped and shifted across the
other. In physical terms, it describes how the shape of one function is modified
by another — a concept widely applicable in engineering systems analysis.

13.3 Convolution Theorem for Laplace Transforms
If F (s) = L{f(t)} and G(s) = L{g(t)}, then the Laplace transform of their
convolution is:

L{(f ∗ g)(t)} = F (s) · G(s)
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Proof Outline:

1. Use the definition of convolution.
2. Apply Laplace Transform to the convolution integral:

L
{∫ t

0
f(τ)g(t − τ)dτ

}
3. Change the order of integration (by Fubini's Theorem or substitution).
4. Evaluate the inner integral and show it equals the product F (s) · G(s).

Thus, convolution in the time domain becomes multiplication in the Laplace
domain.

13.4 Convolution Theorem for Fourier Transforms
Let f(t), g(t) ∈ L1(R), and let their Fourier transforms be F (ω) and G(ω). Then:

F{f ∗ g}(ω) = F (ω) · G(ω)

And conversely:

F−1{F (ω) · G(ω)}(t) = (f ∗ g)(t)

This is extremely useful when analyzing frequency-domain behavior of physical
systems.

13.5 Properties of Convolution
1. Commutative Property:

f ∗ g = g ∗ f

2. Associative Property:

(f ∗ g) ∗ h = f ∗ (g ∗ h)

3. Distributive over Addition:

f ∗ (g + h) = f ∗ g + f ∗ h
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4. Identity Element:

The Dirac delta function δ(t) acts as the identity:

f ∗ δ = f

These properties make convolution a fundamental operation in linear time-
invariant (LTI) systems.

13.6 Applications in Civil Engineering
1. Structural Analysis:

Convolution can model how structures respond over time to varying loads —
crucial in earthquake analysis and dynamic loading conditions.

2. Heat Transfer:

Temperature distribution in slabs or columns subject to variable heat sources
can be expressed as a convolution of the input (heat function) with the system's
impulse response.

3. Groundwater Flow:

In hydrology, convolution helps solve flow problems in porous media, especially
in estimating response functions to precipitation input.

4. Vibrations of Beams and Plates:

The response of damped vibrating systems (common in bridges and buildings)
to external forces is found using convolution with Green’s function or impulse
responses.

13.7 Solving Differential Equations Using Convolution
Consider a second-order linear ordinary differential equation with initial condi-
tions:

y′′ + ay′ + by = f(t)

Taking Laplace Transform and applying initial conditions:

s2Y (s) + asY (s) + bY (s) = F (s) + initial terms
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Solving for Y (s):

Y (s) = F (s)
(s2 + as + b) + terms from initial conditions

Now, using convolution:

y(t) = (f ∗ h)(t)

Where h(t) is the inverse Laplace Transform of 1
s2+as+b , which acts as the

impulse response.

13.8 Evaluation Techniques for Convolution Integrals
Method 1: Direct Integration

Applicable when both f(t) and g(t) are piecewise defined and manageable:

(f ∗ g)(t) =
∫ t

0
f(τ)g(t − τ)dτ

Method 2: Using Laplace Transforms

Step 1: L{f(t)} = F (s), L{g(t)} = G(s)

Step 2: Y (s) = F (s) · G(s)

Step 3: y(t) = L−1{Y (s)}

This approach simplifies many problems in signal processing and systems analysis.

13.9 Examples
Example 1:

Evaluate the convolution (f ∗ g)(t), where:

f(t) = t, g(t) = e−t

Solution:
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(f ∗ g)(t) =
∫ t

0
τ · e−(t−τ)dτ = e−t

∫ t

0
τeτ dτ

Using integration by parts:

= e−t
[
(t − 1)et + 1

]
= (t − 1) + e−t

Example 2:

Solve y′′ + y = sin t, with y(0) = 0, y′(0) = 0, using convolution.

Solution:

Take Laplace Transform:

s2Y (s) + Y (s) = 1
s2 + 1 ⇒ Y (s) = 1

(s2 + 1)2

Now find y(t) = L−1
{

1
(s2+1)2

}
Using known inverse transform:

L−1
{

1
(s2 + 1)2

}
= t · sin t

Thus, y(t) = t sin t

13.10 Graphical Interpretation of Convolution
Understanding convolution through a graphical lens is crucial, especially for
interpreting system behavior in engineering.

Steps to Graphically Compute (f ∗ g)(t):

1. Flip g(τ) to get g(−τ).
2. Shift g(−τ) by t to obtain g(t − τ).
3. Multiply f(τ) · g(t − τ) for all τ ∈ [0, t]**.
4. Integrate the product over τ from 0 to t.

This process essentially “slides” one function over another, multiplying and
summing their overlapping parts at each moment t.
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Use in Civil Engineering Contexts:

• For time-dependent structural load analysis, convolution can visually
represent how a force applied at one point in time influences the system at
another.

• In Finite Element Analysis (FEA), convolution allows the use of
impulse response functions to build the full solution over time.

13.11 Example 3: Piecewise Convolution
Let:

f(t) =
{

1, 0 ≤ t ≤ 1
0, t > 1 , g(t) = t

Find (f ∗ g)(t).

Solution:

We compute:

(f ∗ g)(t) =
∫ t

0
f(τ)g(t − τ) dτ

Case 1: 0 ≤ t ≤ 1

Since f(τ) = 1 for τ ∈ [0, t]:

(f ∗ g)(t) =
∫ t

0
(t − τ) dτ =

[
tτ − τ2

2

]t

0
= t2 − t2

2 = t2

2

Case 2: t > 1

Now f(τ) = 1 only from τ = 0 to 1:

(f ∗ g)(t) =
∫ 1

0
(t − τ) dτ =

[
tτ − τ2

2

]1

0
= t − 1

2

Thus:

(f ∗ g)(t) =
{

t2

2 , 0 ≤ t ≤ 1
t − 1

2 , t > 1
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13.12 Convolution in Discrete-Time Systems (Digital Civil
Systems)
While most traditional civil engineering systems are modeled using continuous-
time functions, modern civil infrastructure, such as smart monitoring systems,
sensors in smart bridges, or automated irrigation systems, require discrete
convolution.

Definition:

For discrete functions f [n] and g[n], the convolution is defined as:

(f ∗ g)[n] =
n∑

k=0
f [k] · g[n − k]

Applications:

• Digital Signal Processing (DSP) for vibration data from sensors.
• Load data analysis from building management systems.
• Automated construction systems responding to control signals.

13.13 Example 4: Discrete-Time Convolution
Given:

f [n] = {1, 2, 1}, g[n] = {1, 1}

Find (f ∗ g)[n].

Solution:

We compute the convolution for each n:

• n = 0: f [0]g[0] = 1 · 1 = 1
• n = 1: f [0]g[1] + f [1]g[0] = 1 · 1 + 2 · 1 = 3
• n = 2: f [0]g[2] + f [1]g[1] + f [2]g[0] = 0 + 2 · 1 + 1 · 1 = 3
• n = 3: f [1]g[2] + f [2]g[1] = 0 + 1 · 1 = 1

Hence, (f ∗ g)[n] = {1, 3, 3, 1}

13.14 Convolution in Green’s Function Method
In solving differential equations in civil systems (beams, plates, or soils), the
Green’s function G(t, τ) gives the response at time t due to an impulse at τ .
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The solution to a system with input f(t) is given by:

y(t) =
∫ t

0
G(t, τ)f(τ)dτ

This is a convolution integral: y(t) = (G ∗ f)(t)

Use Case:

• Soil settlement under time-dependent loading
• Bridge deflection under moving loads

13.15 Civil Engineering Case Example: Convolution in
Structural Dynamics
A building subjected to ground motion f(t) due to an earthquake has a known
impulse response function h(t). The displacement response y(t) of the
building is given by:

y(t) = (f ∗ h)(t) =
∫ t

0
f(τ)h(t − τ)dτ

If:

• f(t) = e−t sin t: ground motion
• h(t) = 1

mω sin(ωt)e−ζt: system response

Then using convolution, you can determine how the building will behave over
time during and after the earthquake.

This approach is the foundation of response spectrum analysis in seismic
design.
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