
Chapter 22: Lambda Expressions and Functional

Interfaces

Introduction

In modern Java development (Java 8 onwards), lambda expressions and functional interfaces
are at the core of the language's support for functional programming. These features make code
more concise, readable, and expressive, especially when working with APIs like Streams,

Collections, and multithreading.

This chapter provides an in-depth understanding of lambda expressions, functional interfaces,

their syntax, usage patterns, and how they fit into the broader landscape of Java programming.

22.1 Functional Programming in Java

Java has traditionally been an object-oriented language. However, from Java 8 onwards,
functional programming paradigms have been integrated into Java to allow:

• Passing behavior as a parameter

• Reducing boilerplate code

• Creating more flexible and reusable APIs

Functional programming emphasizes pure functions, immutability, and statelessness. Lambda
expressions are the foundation of this functional capability.

22.2 What is a Lambda Expression?

A lambda expression is an anonymous function—a block of code that can be passed around
and executed. It can be used to provide the implementation of a method defined by a functional

interface.

Syntax:

(parameters) -> expression

Or

(parameters) -> { statements }

Examples:

(int a, int b) -> a + b

() -> System.out.println("Hello World")

(String s) -> { System.out.println(s); }

22.3 Key Characteristics of Lambda Expressions

1. No need to define a method explicitly.

2. Can be assigned to variables or passed as parameters.

3. No need to use an anonymous inner class.

4. Infers types from context (type inference).

22.4 Functional Interfaces

A functional interface is an interface that has exactly one abstract method. Lambda
expressions can be used to instantiate these interfaces.

Example:

@FunctionalInterface
interface MyFunction {
 int operation(int a, int b);
}

MyFunction add = (a, b) -> a + b;
System.out.println(add.operation(5, 3)); // Output: 8

@FunctionalInterface Annotation

Although not mandatory, using the @FunctionalInterface annotation is a good practice. It

ensures the interface conforms to the single abstract method (SAM) rule.

22.5 Built-in Functional Interfaces (java.util.function)

Java provides a set of pre-defined functional interfaces in the java.util.function package.

Interface Description Example Lambda Expression

Predicate<T> Returns boolean value x -> x > 10

Function<T,R> Takes T, returns R s -> s.length()

Consumer<T> Takes T, returns void s -> System.out.println(s)

Supplier<T> Returns T, takes nothing () -> new Random().nextInt()

UnaryOperator<T> Takes T and returns T x -> x * x

BinaryOperator<T> Takes (T, T) and returns T (x, y) -> x + y

22.6 Type Inference and Target Typing

Java can often infer parameter types of lambda expressions based on the context (i.e., target type
of the functional interface).

Comparator<String> comp = (s1, s2) -> s1.compareToIgnoreCase(s2);

In the above example, Java infers that s1 and s2 are of type String.

22.7 Lambda vs Anonymous Class

Feature Lambda Expression Anonymous Class

Syntax Concise Verbose

this Keyword Refers to enclosing class Refers to anonymous class itself

Overriding Methods Only one (functional interface) Can override multiple

Object Overhead Less (no additional class) More (creates a separate class)

22.8 Scope and Access

• Lambda expressions can access effectively final variables.

 int x = 10;
Runnable r = () -> System.out.println(x); // x must be effectively
final

• You cannot modify local variables inside a lambda unless they are final or effectively

final.

22.9 Lambda Expressions in Collections API

Using forEach with Lambda:

List<String> list = Arrays.asList("Java", "Python", "C++");
list.forEach(item -> System.out.println(item));

Using removeIf:

list.removeIf(s -> s.startsWith("J"));

Using sort with Comparator:

list.sort((s1, s2) -> s1.compareTo(s2));

22.10 Lambda Expressions in Multithreading

Lambda simplifies thread creation:

new Thread(() -> {
 System.out.println("Running in a separate thread");
}).start();

22.11 Method References and Constructor References

A method reference is a shorthand notation of a lambda expression calling a method.

Syntax:

ClassName::methodName

Examples:

Consumer<String> printer = System.out::println;

Function<String, Integer> strToLen = String::length;

Supplier<List<String>> listSupplier = ArrayList::new;

22.12 Stream API and Lambda Expressions

Lambda expressions are often used with Stream API to process data in a functional way:

List<Integer> numbers = Arrays.asList(1, 2, 3, 4, 5);

int sum = numbers.stream()
 .filter(n -> n % 2 == 0)
 .mapToInt(n -> n)
 .sum();

22.13 Custom Functional Interface Example
@FunctionalInterface
interface MathOperation {
 int operate(int a, int b);
}

public class LambdaExample {
 public static void main(String[] args) {
 MathOperation addition = (a, b) -> a + b;
 MathOperation multiply = (a, b) -> a * b;

 System.out.println("Addition: " + addition.operate(5, 3));
 System.out.println("Multiplication: " + multiply.operate(5, 3));
 }
}

22.14 Best Practices

• Prefer built-in functional interfaces.

• Keep lambda expressions short and clear.

• Avoid complex business logic in lambdas.

• Use method references for cleaner syntax.

• Use @FunctionalInterface for clarity and compiler safety.

22.15 Limitations of Lambda Expressions

• Can't throw checked exceptions directly (must handle or wrap).

• Not suitable for all scenarios—sometimes a named class or anonymous class is clearer.

• Debugging stack traces from lambdas can be harder.

Summary

Lambda expressions and functional interfaces introduce a powerful functional style of
programming in Java. They enable more expressive, concise, and readable code, especially when
used with the Collections and Streams API. While lambda expressions bring great benefits, they

must be used wisely, keeping readability and maintainability in mind.

Understanding this chapter equips developers with modern tools and idioms critical to writing

clean and efficient Java applications.

