Solid Mechanics
Prof. Ajeet Kumar
Deptt. of Applied Mechanics
IIT, Delhi
Lecture - 25
Bending of Unsymmetrical Beams

Hello everyone! Welcome to Lecture 25! We will discuss bending of unsymmetrical beams today.

1 Introduction (start time: 00:26)

Think of bending of symmetrical beams, e.g., a beam having rectangular cross-section with its axis along
x-axis and the cross-sectional sides along y and z axes. If we apply momenton the beam acting along z-
axis, the neutral axis of the cross-section was shown to pass through its centroid but the direction of
neutral axis was simply assumed to be parallel to the direction of applied moment, i.e., z-axis in this case
(also see Figure 1).

Figure 1: A typical cross-section of a beam having rectangular cross-section

This assumption is not true in general though. For example, Figure 2 shows a typical cross-section of an
unsymmetrical beam.

Figure 2: A typical cross-section of an unsymmetrical beam - direction of applied momentand neutral
axis need not be parallel.
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The neutral axis for this case turns out to be inclined relative to the direction of bending moment. This
is non-intuitive since it means the axis of bending (neutral axis) can be in a direction other than the
direction of the applied moment. Let us investigate this observation rigorously.

2 Pure bending of unsymmetrical beams (start time: 03:40)

Think of an unsymmetrical beam with its axis along x-axis as shown in Figure 3.
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Figure 3: Pure bending of an unsymmetrical beam.

To start with, let us consider the case of pure bending, i.e., a terminal bending moment is applied
transverse to the beam’s axis. Thus, the bending moment will be constant all along the beam and no
shear/axial force will be presentin the beam’s cross-section. Figure 4 shows a typical cross-section of
this beam. As this is the case of an unsymmetrical cross-section, the direction of neutral axis is an
unknown too. Let us assume some arbitrary direction (in the plane of the cross-section) for neutral axis
which need not pass through the centroid of the cross-section (see Figure 4).

Figure 4: The cross section of the beam shown in Figure 3 with the neutral axis shownin blue.
The beam bends into a circle of radius R about the neutral axis. We then think a line parallel to the

neutral axis but at a distance y’ from it (shown by the green line in Figure 4). The longitudinal strain ex
for all points lying on this line will be given by
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following similar logic as earlier for symmetrical cross-sections. Further assuming o,y and oz;to be zero
as earlier, ox at such points will be given by

Ogax = EG.’IT.’I? = -k (2)

The axial force in the cross-section will thus be

E
Opp AA = ——= y'dA. 3
-//Q() R //(;() J ( )

However, as no axial force acts on the cross-section in case of pure bending, this implies

E
—— // YydA=0 = / y'dA =0 (4)
R J JQq J JQo

Thus, the first moment of the cross-section relative to the neutral axis must be zero which simply means
that the neutral axis has to pass through the centroid of the cross-section. So, just like the case of
symmetrical cross-sections, neutral axis passes through the centroid even for unsymmetrical cross
sections.

We now redraw the cross-section keepingin mind that the neutral axis passes through the centroid as
shown in Figure 5 and again consider a point A at a distance of y’from the neutral axis.
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Figure 5: A typical cross-section of the beam with neutral axis passing through the centroid

Let the coordinates of this point be A(y,z) and express y’ in terms of y and z. Suppose the neutral axis
makes an angle £ with the y-axis as shown in Figure 6. Construct two lines, one parallel to the neutral
axis from the point B(0,z) and the other perpendicular to the neutral axis from point A(y,z) as shown in
Figure 6.
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Figure 6: Zoomed view of Figure 5 with relevant dimensions.

The point at which these two lines intersect is denoted by C. As the neutral axis makes an angle £ with
the vertical line, the line BC, constructed parallel to the neutral axis, will also be at an angle g from the
vertical line. The other angle (£BAC) in the right triangle ABC thus becomes 90° - . Also, the angle that
the neutral axis makes with the z-axis will also be 90° - . Think of another point D at which the neutral
axis and AC intersect. The length y’ will be equal to the difference of the lengths AC and CD in Figure 6.
We now draw a line perpendicular to the neutral axis from the point B which intersects the neutral axis
at E. As BCDE becomes a rectangle, CD = BE. Thus, we get

y’=AC-CD = AC-BE =y sinf - z cosp. (5)

Substituting this in equations (1) and (2), we get

—(ysin 3 — zcos 3 —F(ysin 3 — zcos 3
€xax = (J - : )7 Opx = (J i a ) (6)
R R

Let us now obtain moment about the cross-section’s centroid due to normal stress distribution oxwhich
should equal the externally applied moment, i.e.,

— R > 5
M, = // (yg + zk) X 040t dA
Q0

= // (yg + zk) x E(Z cos f —ysin 5)i dA
J JQ ,

E A .
- & / [(yQ sin 8 — yz cos B)k + (2% cos B — yzsin B)7 | dA. (7)
g Qo

Here E and R could be taken out of the integration. Let us define second area moments of the cross-

section as follows:
// v dA =1, // yzdA = 1I,., f/ Z2dA =1, (8)
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Using them in (7), we get

ﬁo — % [(L: sin 3 — 1. cos 3) - (1, cos 8 — I,.sin 3) J} (9)

g g

M, M,

So, if we apply external moments My and M;on the beam, we can observe from the above equation that
My = (lyy cosp = ly;sinp)Ek, M;= (Izzsinf - Iy, cosp) Ek. (10)

Here k denotesthe bending Curvature as in previous lectures which equals inverse of radius of curvature
R. The angle 3, which represents the angle between the neutral axis and y-axis and the bending curvature
k are the two unknowns and we also have two equations in (10) to obtain them. To obtain S, we divide
equations (10a) and (10b) which yields

M, 1,cosp — 1, sinf

M. I.,sinf— I1,. cos 3 (11)

This equation can be used to find /5 for the general case. For a special case when we apply moment only
about z-axis, i.e., My =0, the numerator of the above equation can be set to zeroto yield
vy

I,cosfp—1,,smfB=0 = tanp = I— (12)
y2

¥

For cross-sections which are symmetric about y-axis and moment is applied about z-axis, the mixed
moment of area /,; vanishes which when substituted in the above equation yields

tanf = oo = =90 (13)

This means that the neutral axis makes an angle of 90° with the y-axis. In other words, it coincides with
z-axis or the direction of applied bending momentsomething that we had simply assumed earlier.

Coming back to the general situation for unsymmetrical beams, once we get f from equation (11), we
can substitute it in either of the equations (10a) or (10b) to obtain bending curvature k. For example, in
the former case, we would get

M,
K= !
E(I,,cos 3 — I,,sin 3) (14)

Finally, substituting x from the above equation in equation (6), we get

—M,(ysin 8 — zcos 3)
(1, cos B — 1. sin f3)
M. (ylyy — 21y.) + My (yl,: — 21..)

B : on substituting S from (11)). 15
];J)z_lyylzz ( gp (11)) (15)
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2.1 Special Case: Wheny and z axes are aligned along principal axes (start time: 29:40)

Let us consider a special case wherey and z axes are aligned along the principal axes of the crosssection
but the bending momentis allowed to act in arbitrary direction (see Figure 7).
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Figure 7: The cross section of an unsymmetrical beamwhere y and z axes are aligned with the principal
axes.

We can resolve this moment along the y and z axes as M, and M,, respectively. Asy and z axes are
principal axes, Iy, = 0. Substituting this in equation (15) simplifies it greatly, i.e.,

—M.y | My

—_— 16
Oz I I, (16)
If we apply moment about z axis only, i.e., M, =0, we get
—M.y
oy = = 17
Oz T (17)

which is the same result that we had obtained earlier for symmetrical cross sections with only M,
present. If we look at equation (16), we observe that the first term comes with a negative sign whereas

the second term comes with a positive sign. To understand this, consider the cross section shown in
Figure 8.
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Figure 8: Thin cross-sections of beams with shear stress distribution shown for open ones

When we apply moment about z axis, the bendingis such that the top side (+y side) isundercompression
whereasthe bottom (-yside) is under tension. Thus, we have a negative sign in front of the first termin
equation (16). But, if we apply a moment about y-axis, the beam bends in such a way that the part of
the beamon the leftside (+zside) undergoes tension while the other part undergoes compression. Since,
the positive side is under tension, there is a positive sign in front of the second term in equation (16).
We can also conclude that even though the cross section is unsymmetrical, if we apply moment along
principal axis, the bending happens asif it were asymmetrical cross-section! The neutral axis gets aligned
with the direction of the applied momenttoo leading tothe formula for bending stress which is the same
as the one for symmetrical cross-sections.

3 Non-uniform bending of unsymmetrical cross-sections (start time: 37:05)

In non-uniform bending, a shear force is also presentin the cross section due to which the bending
moment varies along the length of the beam. The direction of neutral axis will again be governed by
equation (11). To obtain shear stress distribution in the cross-section, let us look at the line which is at a
distance of y’ from the neutral axis. For symmetrical beams, for simplicity, we had assumed uniform
shear stress distribution on lines parallel to neutral axis as shown in Figure 9.
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Figure 9: Shear stress along a line parallel to the neutral axis if we make an assumption of uniform
shear distribution.

Will such an assumption be valid for unsymmetrical beams also? It turns out that we cannot make such
an assumption. This is because in that case, at points on the cross-sectional boundary, the shear
component of traction would not be tangential to the cross-section’s boundary. Whenever we have a
beam having symmetrical or unsymmetrical cross-section and its lateral surface is free of externally
applied load, then, along the periphery of the cross-section, shear traction has to be directed along the

periphery as shown in Figure 10.

Figure 10: Shear stress distribution along the periphery of the cross-section of a beam when the lateral
surface of the beamis traction free

However, we cannot comment about shear stress distribution at points away from the periphery just
using the free surface condition. Essentially, we cannot assume uniform shear stress distribution barring
us from obtaining any analytical result. However, we do obtain analytical result for special type s of cross-

sections - they have to be thin and open which we discuss now.
3.1 Shear stress distribution in thin and open cross-sections (start time: 42:11)

Figure 11 shows three different cross sections all of which are thin, i.e., their thickness is very small.
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Figure 11: Thin cross-sections of beams with shear stress distribution shown for openones

The second figure is a closed cross-section while first and third are open cross-sections. We know that
the shear stress at points which are close to the periphery of the cross-section has to be directed along
the periphery itself. At points away from the periphery, the direction of shear stress is an unknown. For
thin cross-sections, however, the thickness is so small that all points can be safely assumed to lie near
the periphery. We can thus assume that the shear stress distribution is along the periphery at all points
through the thickness too. In fact, one can also assume the magnitude of shear stress to be uniform
through the thickness due to such a small thickness. Moreover, for open cross sections, the shear stress
must flow from one end of the cross-section to the other end as shown in the open cross-sections in
Figure 11 - this flow may be directed oppositely too which gets known only aftersolving. For closed cross -
sections, there are no definite ends though which does not allow the flow to be unidirectional. So, we
will consider only thin and open cross-sections as they are easy to analyze.

Let us consider a general thin and open cross-section beam as shown in Figure 12.
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Figure 12: A small elementis considered in a beam with thin and open cross-section
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As the shear flows from one end to the other and that it is uniform through the thickness, one can
paramterize its distribution using an arc-length coordinate s along the cross-section’s periphery as shown
in Figure 13.
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Figure 13: A typical cross-section of the beam shown in Figure 12 togetherwith the arc-length
coordinate s.

We can furthersafely assume the shear to flow in the direction of increasing s. If the distribution comes
out to be negative, it would simply mean that the shear actually flowsin the other direction. We can also
denote the shear stress as tsx: x denotes the plane of the cross-section in which shear stress is acting
while s dentoes the direction of shear stress. Furthermore, tsx will be a function of s and x only. To find
Tsx, Wwe consider a small elementat one end of the beam as shown in Figure 12. All the forces acting on
this elementin the x-direction are shownin Figure 14.
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Figure 14: The small elementconsidered in Figure 12 with all forces in the x-direction shown.
The end faces (whose normals are in s direction) will be called the s faces. On +xand -x planes, ox acts.

The —s plane at s =0 is traction-free while 7« acts on +s plane at arc-length s in +x-direction. The total
force on this elementin x-direction must be zero for equilibrium, i.e.,
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// [Or(z + Az, y, 2) —er(ir,y,;J]d44+// Tes(€,8)dA =0 (18)
x-plane s-plane

Here, { denotesthe local coordinate in x-direction. It varies from x to x+Ax for points in the small element.
Asthe above equation is valid forall elementsregardless of the size Ax, we can shrink the size Ax to zero.
Let us first divide both the sides by Axand thentake limit Ax-> 0, i.e.,

T A — Uzx a; TS I"‘.
lim // 022 (@ + A2,9,2) = Taa(T,9, 2 + lim // T2 (£, 5)a =0. (19)
Az—0 J Jx-plane Ax Ax—0 J Jsplane - Ar

In the second integral, as the integrand ts does not vary through the thickness, the integration through
the thicknessyields txs ts where tsdenotes the thickness of the cross-section at s. The second area integral
thus gets convertedinto just a line integral along x, i.e.,

z+Azx
) Trs\Ss 8 d
// 0. (T,y,2)dA +t, lim J. (£, 5)dg =0
x-plane Ar—s0)

Ax
— /_/ O—fxz(rry:;}d*il + i T_‘ss(rss} =0
x-plane

1

Or, Tpelr,8)=—— ff o _(z,y,z)dA. (20)
ts x-plane

We can now plug in the expression of ox from equation (15) which yields

I ! =

_ 1 f] M’ (ufyy zl,.) + U (yl,. Jﬂ)daﬂl. (21)

x-plane I - I ‘r

We can thenreplace the derivatives of moments with shear forces using the following relation which we
had derived in the last lecture:

dM dM,
= Y Y = V. (22)
dx o dr :
Upon plugging them into (21), we get
x-plane -{53 - Iyyfzz

As shear forces and the second area moments are constants for a cross-section, the denominator of the
integrand can be taken out of the integration. We just need to work out the integrals [[ ydA and [[ zdA
in the numerator. These integrals are over the x-plane of the small elementonly and not over the entire
cross section. Figure 15 shows the area of this integration going from the arc-length coordinate 0 to s as
shaded.
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Figure 15: x-plane of the small element considered in Figure 14 denoted as the shaded area.

The integrations [[ ydA and [[ zdA over this shaded part of the x-plane would give us the y and z
coordinates of the centroid of the shaded area multiplied with the area of shaded region which we

denote by
2, = // ydA =Y5A*, Q= // 2dA = Z°A° (24)

Here, Ysand Zs are the centroidal coordinates just the shaded region (from s =0 to s = s) and not the
whole cross-section. Similarly, Asis the area of justthe shaded region. Upon plugging them into equation
(23) and further noting that s = 7sx, we get
—— |
t-s([,;])z - [:t/-11133>

Tsx = _Vy(QZIyy - Qi-[l z) + ‘/;(Q;Iyz - Qzlzz)] (25)
This is the general formula for shear stress distribution in thin and open cross-sections. We can again
consider the special case where y and z axes are aligned along the principal axes in which case /.,
vanishes. The above formula then simplifies to

1 , . V,Q; V.Q¢
o = -Vv,Q:1,, —V.Q°I,.,] = ——4% — %=
" -[yy]zzts[ yQy v ' ~Q~ ~~] [zzts [yyts (26)
If we further assume V;=0, our formula reducesto
V,Q;
PR 27
Ts: Tt (27)

This is the same expression that we had derived earlier for symmetrical cross-sections exceptthat there
is a negative sign here. This difference arises because the direction of increasing s that we have chosen
coincides more with -y direction than +y direction.
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