
Design and Analysis of Algorithms, Chennai Mathematical Institute

Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week – 02

Module – 01

Lecture - 09

Arrays and lists

So, in this unit we are going to look at searching and sorting for a value in a list of

values.

(Refer Slide Time: 00:06)

So, let us review how list of values are actually stored in a computer. So, there are two

basic ways of storing a sequence as you know arrays and lists. Now, functionally they

may looks similar, but from a complexity theory point of view, from an efficiency point

of view, how the data is organized makes the difference. So, let us just review some

basics ideas about arrays and lists.

78

(Refer Slide Time: 00:30)

So, an array to begin with is a single block of memory. So, if you have an array, should

think of it as something which has consecutive elements storing the values in the array.

So, if you have an array A of size n, then A 0 is immediately followed by A 1 and so, on

until A n minus 1. So, the crucial fact now is that if I know where the array starts, then if

I want to get to some value A i, then I just have to multiply by i, the size of each unit of

array to find out exactly where A i is.

So, this amounts to saying that we can access any value A i, any position i in the array in

constant time regardless of whether i is the beginning or at the end because we just have

to compute the offset. So, we have the starting position and then given i, we can compute

directly in one shot just doing arithmetic with respect to the starting address, the position

of A i.

Now, on the other hand, if I want to insert an element between A i and A i plus 1, this

becomes a big complicated that because, supposing now want to push a value here; that

means, I have to take these values and move them down,; that means, each of these value

has to be shifted by 1. Therefore, the time taken to insert an element depends on the

position, but in the worst case I might have to shift all the elements by 1. So, this could

take time proportional to the size of the arrays. So, this could be a order n operations.

The same way contraction can require me to take an array and then if I want to remove

this element, then I have to shift all of these elements up by 1. So, if I want to expand or

contract an array is an expensive operation, but I can access any given element in an

79

array in a fixed cost time which is independent of the position. And I can just treat it as

like any other access, like accessing a variable x or y or anything else simple in my

program.

(Refer Slide Time: 02:24)

A list on the other hand is generally a flexible structure and as elements are added, they

gets scattered around the memory with no fixed relationship to each other. So, typically a

list will have values in different parts of the memory and the idea is that each value will

points to the next. So, supposing this is the beginning of the list, then this will point to

the next element, this will point to the third element, this will point to the fourth element

and so, on.

So, because of this linking structure usually in most introductory data structures courses,

lists are often referred to as link list. So, link list is just a concrete way of implementing

such a flexible step structure. So, now what this means is that, if I want to find where say

l 2 is so, let us assume that this is l 0, l 1 and l 2. Then, I have no idea in general, where l

2 is located, but I know where l 0 located, because my list name and my program l will

point to l 0.

So, I will have to follow these arrows until I reach l 2. So, in general if I want to go l A i,

I have to start at A 0, then follow my link to A 1 and so, on. So, this will take me i steps,.

So, therefore, the further down in a list I need to go, the longer it takes me,. So, accessing

A i is proportional to i. So, in general if I have to access the i, the limit of l is it is the

linear dimension. On the other hand, inserting and deleting is comparatively easy, if I

80

know where I am, supposing I want to insert something between l 2 and l 3, then what I

would do is I would first construct a new node here and then I will do what I would call

plumbing.

So, I will remove this link and I would instead, insert a link from l 2 to the new node and

from the new node to l 3 and I know which links to add, because this is a node I have just

created. So, I know its location and l 2 points to l 3. So, I can transfer that information to

the new node so, that these links can be established.

And a similar thing happens when I want to delete a node, if I want to delete this node

for example, then what I have to do is, I just take this link and I bypass it and go directly.

So, by just shuffling these links around, in a local sense in a constant amount of time, we

can insert or delete at any point in a list. But, finding the position requires me to start at

the beginning and go the end, this takes linear time.

(Refer Slide Time: 04:47)

So, this distinction has an impact on what we can do. Suppose, we want to take a

sequence of values and we want to take a value at position i and position j and I want to

exchange it. So, if I know the positions i and j, in an array I can easily get to A i and A j

at constant time and exchange them. So, this is exactly like swapping x and y and no

difference in swapping x and y, I am swapping A i and A j.

But, if it is a list, then I have to walk down to find this, then I have to walk down to find

that,. So, I have find these two things and then I have to exchange. So, it will take me a

linear time just to locate the positions to exchange. On the other hand, as we have

81

already seen, if you wanted to delete an element from a middle of a list or we want to

insert an element into a list, this takes constant time, provided we are already at A i.

So, if we reach A i and we find at this position you want to do something we can do that

operation, insertion or deletion in constant time. But, at that position, if you want to

insert a value or contract the array, then we have to shift a whole number of elements

forwards or backwards and this will take linear time. So, sometimes this impacts what

we can do, an algorithms are work well on one data structure will not work in the other,

though they are abstractly representing the same thing, a sequence of values from one to

n or 0 to n minus 1. As an example of this, we will see soon binary search. Binary search

works on arrays, but does not work on list, because it requires us to repeatedly probe the

array at some index i in an efficient way.

82

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

