
Chapter 29: Eigenvalues

Introduction
In civil engineering, many problems related to structural stability, vibration
analysis, and systems of differential equations involve matrices. Among the most
powerful tools for analyzing matrices are eigenvalues and eigenvectors. These
concepts help us understand linear transformations, especially those that involve
stretching, compressing, or rotating vectors. The knowledge of eigenvalues is
essential for applications such as stability analysis of structures, principal stress
analysis, and modal analysis in vibration problems.

This chapter explores the theoretical foundations and computational techniques
of eigenvalues, especially as they apply to real symmetric matrices, which often
arise in civil engineering contexts.

29.1 Definitions and Concepts
29.1.1 Eigenvalues and Eigenvectors

Let A be an n × n square matrix. A scalar λ is called an eigenvalue of A if
there exists a non-zero vector x ∈ Rn such that:

Ax = λx

Here:

• λ ∈ R (or C) is an eigenvalue,
• x is a corresponding eigenvector.

This equation can be rearranged as:

(A − λI)x = 0

This is a homogeneous system of linear equations. For a non-trivial solution
(x ̸= 0), the coefficient matrix must be singular, i.e.,

det(A − λI) = 0

This is called the characteristic equation, and the polynomial det(A − λI) is
the characteristic polynomial.

1



29.2 Computing Eigenvalues and Eigenvectors
29.2.1 Steps to Find Eigenvalues

1. Start with the square matrix A.
2. Subtract λI from A to get A − λI.
3. Compute the determinant det(A − λI).
4. Solve the resulting characteristic polynomial p(λ) = 0 for λ. These are the

eigenvalues.

29.2.2 Steps to Find Eigenvectors

For each eigenvalue λ:

1. Substitute λ into A − λI.
2. Solve (A − λI)x = 0 to find the null space (eigenvectors).

29.3 Algebraic and Geometric Multiplicities
Algebraic Multiplicity

The algebraic multiplicity of an eigenvalue λ is the number of times λ appears
as a root of the characteristic polynomial.

Geometric Multiplicity

The geometric multiplicity is the dimension of the eigenspace corresponding
to λ, i.e., the number of linearly independent eigenvectors associated with λ.

Important:

1 ≤ Geometric Multiplicity ≤ Algebraic Multiplicity

29.4 Properties of Eigenvalues
1. Trace and Determinant:

• The sum of eigenvalues (counted with multiplicity) is equal to the
trace of the matrix:

∑
λi = tr(A)

• The product of eigenvalues is equal to the determinant:

∏
λi = det(A)
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2. Eigenvalues of Triangular Matrices:

• For an upper or lower triangular matrix, the eigenvalues are simply
the diagonal entries.

3. Real Symmetric Matrices:

• Have real eigenvalues.
• Are orthogonally diagonalizable (important in principal

stress/strain analysis).

29.5 Diagonalization of a Matrix
A matrix A is diagonalizable if there exists an invertible matrix P and a
diagonal matrix D such that:

A = PDP −1

Where:

• The columns of P are eigenvectors of A,
• The diagonal entries of D are the corresponding eigenvalues.

Diagonalization is useful in:

• Solving systems of differential equations,
• Matrix powers: Ak = PDkP −1,
• Vibration analysis in civil engineering.

29.6 Applications in Civil Engineering
1. Structural Analysis

In stiffness matrix methods, eigenvalues represent natural frequencies of struc-
tures. Large eigenvalues indicate stiff modes, while small ones indicate flexible
modes.

2. Stability of Structures

Buckling analysis involves eigenvalue problems:

(K − λG)x = 0

Where K is the stiffness matrix and G is the geometric stiffness matrix.
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3. Modal Analysis

The dynamic behavior of buildings, bridges, and other structures is analyzed
using eigenvalue problems. The eigenvectors represent mode shapes and the
eigenvalues represent natural frequencies.

4. Principal Stresses and Strains

In stress analysis, the stress tensor is symmetric. The eigenvalues of the stress
matrix are the principal stresses, and the eigenvectors indicate the principal
directions.

29.7 Special Case: Symmetric Matrices
Let A ∈ Rn×n be symmetric (A = AT ). Then:

• All eigenvalues are real.

• Eigenvectors corresponding to distinct eigenvalues are orthogonal.

• A can be diagonalized by an orthogonal matrix:

A = QDQT

This is especially relevant in stress analysis and finite element methods
(FEM).

29.8 Example Problems
Example 1: Eigenvalues and Eigenvectors

Let:

A =
[
2 1
1 2

]
Step 1: Find characteristic equation:

det(A − λI) =
∣∣∣∣2 − λ 1

1 2 − λ

∣∣∣∣ = (2 − λ)2 − 1 = λ2 − 4λ + 3 = 0

⇒ λ = 1, 3

Step 2: Find eigenvectors:
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• For λ = 1: (A − I)x = 0 ⇒
[
1 1
1 1

]
⇒ x1 =

[
1

−1

]
• For λ = 3: (A − 3I)x = 0 ⇒

[
−1 1
1 −1

]
⇒ x2 =

[
1
1

]

29.9 Numerical Methods (Brief Introduction)
For large matrices arising from FEM or real-world structural models, numerical
techniques are used:

• Power Method: Estimates the largest eigenvalue.
• QR Algorithm: Computes all eigenvalues numerically.
• Jacobi Method: For symmetric matrices.

These are implemented in civil engineering software tools like ANSYS,
STAAD.Pro, and MATLAB.

29.10 Power Method for Dominant Eigenvalue
The Power Method is a numerical iterative algorithm for finding the dominant
eigenvalue (i.e., the eigenvalue of largest magnitude) and its corresponding
eigenvector of a matrix. This is especially useful when the matrix is large and
sparse, which is often the case in finite element models of civil structures.

Algorithm Steps:

Given a matrix A ∈ Rn×n, and an initial guess vector x0, perform the following:

1. Normalize x0, i.e., x0 := x0
∥x0∥

2. For k = 1, 2, . . .:

• yk = Axk−1
• µk =∥ yk ∥
• xk = yk

∥yk∥

As k → ∞, xk → x (an eigenvector), and µk → λ (the dominant eigenvalue).

Convergence Conditions:

• The matrix must have a unique eigenvalue λ1 such that |λ1| > |λ2| ≥ · · · ≥
|λn|.

• The initial vector x0 must have a component in the direction of the
dominant eigenvector.
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Use in Civil Engineering:

Used for estimating the fundamental natural frequency (first mode shape)
of tall buildings and long bridges modeled by stiffness and mass matrices.

29.11 QR Algorithm for Eigenvalue Computation
The QR algorithm is a robust numerical method to compute all eigenvalues
(and optionally eigenvectors) of a square matrix.

Basic Idea:

If A0 = A, then:

Ak = QkRk, Ak+1 = RkQk

Where:

• Qk is orthogonal, Rk is upper triangular (via QR decomposition),
• This process iterates: Ak+1 = QT

k AkQk.

As k → ∞, Ak converges to an upper triangular matrix with eigenvalues of A
on the diagonal.

Advantages:

• Applicable to general square matrices.
• Works well with symmetric matrices (faster convergence).

Civil Engineering Use:

Used in vibration analysis software to compute full mode shapes of complex
structural systems.

29.12 Cayley-Hamilton Theorem
The Cayley-Hamilton Theorem states that every square matrix satisfies its
own characteristic equation.

Let A ∈ Rn×n and its characteristic polynomial be:

p(λ) = det(A − λI) = λn + a1λn−1 + · · · + an−1λ + an

Then:
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p(A) = An + a1An−1 + · · · + an−1A + anI = 0

Applications:

• Matrix functions and inversion.
• Efficient computation of matrix powers.
• Reduction of high-order differential systems.

Civil Engineering Use: Simplifies calculations involving repeated matrix
multiplications in dynamic simulations of structures.

29.13 Spectral Decomposition (For Symmetric Matrices)
If A ∈ Rn×n is symmetric, then:

A = QΛQT

Where:

• Q is an orthogonal matrix whose columns are normalized eigenvectors,
• Λ is a diagonal matrix with eigenvalues λ1, . . . , λn.

Spectral Theorem (Real Symmetric Case):

Every real symmetric matrix is diagonalizable by an orthogonal transformation.

This is fundamental in principal component analysis (PCA) and
stress/strain tensor decomposition.

29.14 Application: Principal Stress and Strain in 2D
In 2D solid mechanics, the stress tensor is given by:

σ =
[

σx τxy

τxy σy

]
To find principal stresses, solve:

det(σ − λI) = 0 ⇒ λ2 − (σx + σy)λ + (σxσy − τ2
xy) = 0

Eigenvalues λ1, λ2 are the principal stresses.

The directions (eigenvectors) show the orientation of the principal planes,
which are important in:
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• Reinforcement design,
• Earthquake stress analysis,
• Tunnel lining stability.

29.15 Generalization to Complex Matrices and Systems
In some advanced civil engineering applications (e.g., damped vibrations, elec-
trical network modeling), matrices may have complex entries. The theory of
eigenvalues extends naturally to complex matrices:

• Eigenvalues can be complex.
• Complex eigenvectors arise in oscillatory and damping solutions.

Important tools:

• Hermitian matrices (analog of symmetric matrices over complex num-
bers).

• Unitary diagonalization: A = UΛU∗

29.16 Eigenvalue Condition Number and Sensitivity
The condition number of an eigenvalue problem measures how sensitive
eigenvalues are to changes in the matrix.

Definition:

If A is perturbed slightly to A + ∆A, the eigenvalues λi may shift significantly,
especially for non-symmetric matrices.

Civil Engineering Relevance:

In numerical simulations (like FEM), round-off errors and mesh imperfections
can lead to eigenvalue drift:

• Can affect modal frequencies and buckling loads.
• Makes it essential to use well-conditioned models and high-precision com-

putations.
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