

Hydraulic Engineering
Prof. Mohammad Saud Afzal
Department of Civil Engineering
Indian Institute of Technology – Kharagpur

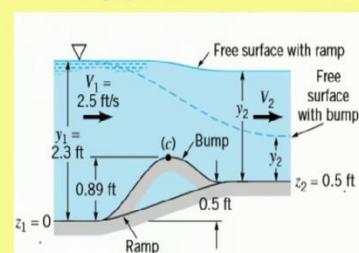
Lecture - 31
Introduction to Open Channel Flow and Uniform Flow (Contd.)

(Refer Slide Time: 00:31)

Q

Class Question

Water flows up a 0.5 ft tall ramp in a constant width rectangular channel at a rate $q = 5.75$ ft^2/s . If the upstream depth is 2.3 ft, determine the elevation of the water surface downstream of the ramp $y_2 + z_2$. Neglect viscous effects.



The diagram shows a rectangular channel with a ramp. The upstream depth is $y_1 = 2.3$ ft, and the ramp height is 0.5 ft. The water surface has a bump downstream. The elevation downstream is $y_2 + z_2 = 0.5$ ft. The flow rate is $q = 5.75$ ft^2/s .

Q

G

S

T

E

A

R

D

P

C

I

N

H

O

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

Q

R

S

T

U

V

W

X

Y

Z

A

B

C

D

E

F

G

H

I

J

K

L

M

N

O

P

<div style="background-color

With $S_0 l = z_1 - z_2$ and $h_L = 0$ conservation of energy (actually the Bernoulli equation) requires that

$$y_1 + \frac{v_1^2}{2g} + Z_1 = y_2 + \frac{v_2^2}{2g} + Z_2$$

For the conditions given ($Z_1 = 0$, $Z_2 = 0.5$ ft, $y_1 = 2.3$ ft, and $V_1 = \frac{q}{y_1} = 2.5$ ft/s), this becomes

$$1.90 = y_2 + \frac{v_2^2}{64.4} \quad (1)$$

Where V_2 and y_2 are in ft/s and ft, respectively. The continuity equation provides the second equation

$$y_1 V_1 = y_2 V_2$$

Or $y_2 V_2 = 5.75 \text{ ft}^2/\text{s}$

Equations 1 and 2 can be combined to give

$$y_2^3 - 1.90y_2^2 + 0.513 = 0$$

So, with this equation, $S_0 l$ is equal to $z_1 - z_2$, and energy loss is equal to 0 that means conservation of energy. The Bernoulli's equation will require that at 2 points we equate $y_1 + v_1^2/2g + Z_1$ is equal to $y_2 + v_2^2/2g + Z_2$. For the conditions that are given, we know, Z_1 is equal to 0, Z_2 is 0.5 feet, if you go here, you see that Z_1 is equal to 0, Z_2 is at 0.5 feet, y_1 is 2.3 feet. Therefore, v_1 is given by small q 1 by y_1 , which is q_1 because was given 5.75 and if you divide it by y_1 , that is, 2.3 feet it gives 2.5 feet per second.

Therefore, the left hand side the value will turn out to be 1.90, y_2 is that we do not know and $v_2^2/2g$ also we do not know but other equations but other values we know. We have substituted the value of y all in this fts unit, where V_2 and y_2 to are in feet per second and feet respectively. Now, we also apply the continuity equation and this will give us a second equation. So, $V_1 y_1 = V_2 y_2$.

So, V_1 here you see, $V_1 y_1$, so $y_1 V_1$ or, you know, $V_1 y_1$ while because b is constant, the depth, the width is equal to $V_2 y_2$. So, y_2 into V_2 is equal to because we know $y_1 V_1$. y_1 we know 2.3 and V_2 also we know. Sorry, V_1 we also know, V_1 is 2.5 So, this becomes $V_2 y_2$ equals to 5.75 feet square per second, that is another equation that we have got. Now, equation 1 and 2 can be combined to give a cubic equation, if you do in terms of y you can find this equation $1 y_2$ whole cube - $1.90 y_2$ square + 0.513 = 0.

(Refer Slide Time: 04:42)

which has solutions $y_2 = 1.72 \text{ ft}, y_2 = 0.638 \text{ ft}$ or $y_2 = -0.466 \text{ ft}$

Two of these solutions are physically realistic, but the negative solution is meaningless. This is consistent with the previous discussions concerning the specific energy. The corresponding elevations of the free surface are either $y_2 + Z_2 = 1.72 \text{ ft} + 0.50 \text{ ft} = 2.22 \text{ ft}$

Or $y_2 + Z_2 = 0.638 \text{ ft} + 0.50 \text{ ft} = 1.14 \text{ ft}$

Which of these two flows is to be expected? This question can be answered by use of the specific energy diagram obtained from Eq. 10, which for the problem is

$$E = y + \frac{0.513}{y^2}$$

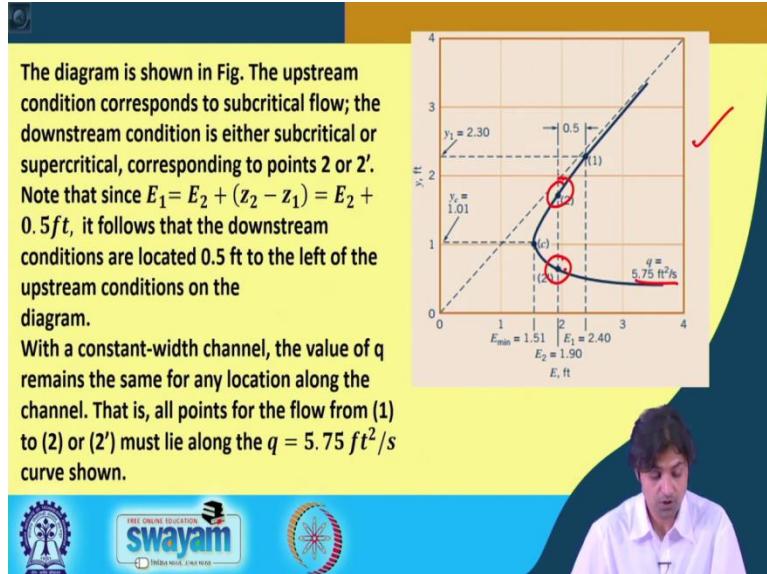
where E and y are in feet.

Now, if we solve this, we will get 3 solutions, y_2 is equal to 1.72 feet, y_2 is going to be another, another value is going to be 0.638 feet and this is a negative value. So, of course, we are going to neglect the negative values. So, 2 of these solutions are physically realistic, but the negative solution is meaningless. This is consistent with our previous discussion concerning the specific energy; there we also neglected the negative value.

The corresponding elevations of the free surfaces are either $y_2 + z_2$ is going to be one, I mean, if we take 1.72 as y_2 2.22 feet or if we take 0.638 feet then it will be 1.14 feet. So, actually, which of these flows is to be expected? The question can be answered by use of the specific energy diagram obtained from equation 10 which for the problem is. So, for this particular question, if we write specific energy, we have to make specific energy diagram for this equation.

This question is more for understanding, until this point is fine for calculations in numericals in the assignments and exams, but, I mean, the later discussion is a little intriguing, you know. So, for this particular question the energy the specific energy diagram E is equal to $y + 0.513 / y$ square is something like this, where E and y both are in feet.

(Refer Slide Time: 06:35)



So, if we plot a diagram, we will get something like this, for this q which is 5.75 feet square per second. This is the diagram that we get, we plot we see that why critical is going to occur at 1.01 meter, the E minimum everything has been calculated if we plot this curve. So, it is, so the diagram is shown on the right hand side. The upstream conditions correspond to subcritical flow; the downstream is either subcritical or supercritical corresponding to the points 2 or 2 dash.

So, the values that we have got is either this one or this one, which is very true because this is the same discussion, which we had seen in the specific energy diagram. Now, if we note that since $E_1 = E_2 + z_2 - z_1$ or $E_2 + 0.5$ feet, it follows that the downstream conditions are located 0.5 feet to the left of the upstream conditions on the diagram. Now, with a constant width channel the value of q will remains the same that is true for any location along the channel. That is, all points for the flow from 1 to 2 or 2 dash.

So, this is 2 and this is 2 dash. I will just take away this. This is 2 and this is 2 dash that is all points for flow from 1 to 2 or 2 dash, must lie along this line. This is just the discussion of this curve actually going on.

(Refer Slide Time: 08:34)

Any deviation from this curve would imply either a change in q or a relaxation of the one-dimensional flow assumption. To stay on the curve and go from (1) around the critical point (point c) to point (2') would require a reduction in specific energy to E_{min} . As is seen from Fig. of the problem, this would require a specified elevation (bump) in the channel bottom so that critical conditions would occur above this bump. The height of this bump can be obtained from the energy equation written between points (1) and (c) with $S_f = 0$ (no viscous Effects) and $S_0 l = z_1 - z_c$. That is, $E_1 = E_{min} - z_1 + z_c$.

In particular, since $E_1 = y_1 + \frac{0.513}{y_1^2} = 2.40 \text{ ft}$ and $E_{min} = \frac{3y_c}{2} = \frac{3\left(\frac{q^2}{g}\right)^{\frac{3}{2}}}{2} = 1.51 \text{ ft}$

Any deviation from this curve would imply either a change in q or a relaxation of one dimensional flow assumptions. To stay on the curve and go from one, so this is the point one; the critical would require a reduction in specific energy to E minimum. As is seen from figure of the problem, this would require a specific elevation bump in the channel bottom so that the critical conditions would occur above this bump.

The height of this bump can be obtained from the energy equation written between point one and c with S_f is equals to 0. So, E minimum is going to be 1.51 feet and the top of this bump would need to be $Z_c - Z_1$ is equal to $E_1 - E_{min}$, that is, you see, E_1 is going to be $E_{min} - Z_1 + Z_c$ critical.

(Refer Slide Time: 09:47)

The top of this bump would need to be $z_c - z_1 = E_1 - E_{min} = 2.40 \text{ ft} - 1.51 \text{ ft} = 0.89 \text{ ft}$ above the channel bottom at section (1).

The flow could then accelerate to supercritical conditions ($Fr_{2'} > 1$) as is shown by the free surface represented by the dashed line in Fig. of problem.

Since the actual elevation change (a ramp) shown in Fig. of problem does not contain a bump, the downstream conditions will correspond to the subcritical flow denoted by (2), not the supercritical condition (2'). Without a bump on the channel bottom, the state (2') is inaccessible from the upstream condition state (1).

Such considerations are often termed the accessibility of flow regimes. Thus, the surface elevation is

$$y_2 + Z_2 = 2.22 \text{ ft}$$

So, $Z_c - Z_1$ will be $E_1 - E_{min}$, that is, 0.89 feet above the channel bottom at section 1. The flow could then accelerate to supercritical conditions as is shown by the free surface represented by the dashed line. Since the actual elevation change shown in figure of the problem does not contain a bump, the downstream condition will correspond to the subcritical flow denoted by 2, not the supercritical condition 2 dash. Without a bump on the channel bottom, the state 2 dash is inaccessible from the upstream condition state at 1.

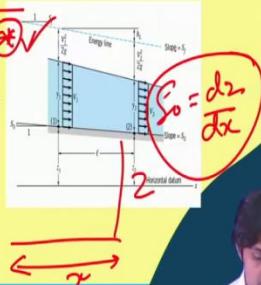
Such considerations are often termed the accessibility of flow regimes. Thus, the surface elevation is 2.2. So, because of this discussion $y_2 + Z_2$ is not going to be 1.68 feet that was there you see here. If you had followed this description, I mean, if you just understand, so this comes to be $y_2 + Z_2$ is coming out to be 2.22 feet and not 1.14 feet. But I am not expecting you to go to such a detailed discussion. If you have understood well and I mean, fine.

Otherwise even if you have not understood this particular discussion about the bump and other things that is also okay, because what you need to know, how to calculate the specific energy, the minimum energy, the critical depth, is the flow supercritical or subcritical and other things like that.

(Refer Slide Time: 11:34)

Channel Depth variation

- Assumptions: Gradually varying flow ($dy/dx \ll 1$)
- The total head H is given by
$$H = \frac{V^2}{2g} + y + z \quad \text{Eq. 11}$$
- The energy equation becomes
$$H_1 = H_2 + h_L \quad \text{Eq. 11}$$
- h_L is the head loss between sections 1 and 2
- The slope of energy line is
$$\frac{dH}{dx} = \frac{dh_L}{dx} = S_f$$
- Slope of channel bottom is
$$\frac{dz}{dx} = S_0$$



The diagram illustrates the relationship between the energy line and the channel bottom. It shows a cross-section of a channel with a trapezoidal profile. The energy line is a straight line connecting two points, 1 and 2, on the channel bottom. The slope of the energy line is labeled S_f . The channel bottom is labeled with a slope $S_0 = \frac{dz}{dx}$. The diagram also shows the total head H at section 1 and section 2, and the head loss h_L between the two sections.

I think, we can proceed now, to a topic that is called channel depth variation. So, for Channel depth variation the general assumption is that, it is a gradually varying flow, that is, dy / dx is less than 1. We have studied this type of flow, gradually varied flow, uniform flow and rapidly varying flow. So, for channel depth variation, we assume that the flow is gradually varying.

Therefore, the total head H is given by
$$\frac{V^2}{2g} + y + z$$
. This is equation 11.

Then the energy equation becomes, if we assume the total head H 1 because there was no loss enough going to point 2, this $H_2 + h_L$, where h_L is the energy loss, where h_L is the energy loss or the head loss between section 1 and section 2. The slope of energy line is, so this is the equation or this is the equation, so we say, if you use this equation here, we say that dH / dx is $\frac{dh_L}{dx}$.

Because other things if you see, delta H , if you divide by delta x , this equation, star equation, then we get dH / dx is equal to $\frac{dh_L}{dx}$ which is equal to S_f , because this is S_f . So, slope of the channel bottom is dZ / dx . Z , if Z is the height the datum, you know, so it becomes dZ / dx that is the slope that is what we had seen, in terms of x and this was the Z , the Z , datum Z . So, it becomes dZ / dx is the slope. Okay, I will just take all of this. So, if you go back to this diagram again. So, you see, this equation and this equation when hold.

(Refer Slide Time: 14:01)

Channel Depth variation

- Differentiating Eq. 11 w.r.t x

$$\frac{dH}{dx} = \frac{d}{dx} \left(\frac{V^2}{2g} + y + z \right) = \frac{V}{g} \frac{dV}{dx} + \frac{dy}{dx} + \frac{dz}{dx}$$

- Using slope of energy line and bottom slope we obtain

$$\frac{dh_L}{dx} = \frac{V}{g} \frac{dV}{dx} + \frac{dy}{dx} + S_0$$
$$\frac{V}{g} \frac{dV}{dx} + \frac{dy}{dx} = S_f - S_0 \quad \text{Eq. 12}$$

Now, if you differentiate 11, so equation number 11. This equation with respect to x, what are we going to get? So dH / dx is equal to dH / dx of whole H, this is H. So, differentiating one term by term so it will become $2V / 2g$ so it will becomes $\frac{V}{g} \frac{dV}{dx} + \frac{dy}{dx} + \frac{dz}{dx}$. So, using the slope of energy line and the bottom slope we can obtain, so dh / dx is also dh_L / dx from the previous slide.

So, dV / dx is the same and dy / dx is the same, but dz / dx can be written as S_0 . What is this value? This is S_f . So, $V / g dV / dx + dy / dx$ is equal to S_f , S_0 can be taken on the left hand side. So, we can, we are able to get $\frac{V}{g} \frac{dV}{dx} + \frac{dy}{dx} = S_f - S_0$ or this is called equation number 12, in our current slides.

(Refer Slide Time: 15:26)

Channel Depth variation

- The velocity of flow in rectangular channel of constant width b is given by $V = q/y$

- Differentiating it wrt x we obtain

$$\frac{dV}{dx} = -\frac{q}{y^2} \frac{dy}{dx} = -\frac{V}{y} \frac{dy}{dx}$$

- Multiplying above equation with V/g we obtain

$$\boxed{\frac{V}{g} \frac{dV}{dx} = -\frac{V^2}{gy} \frac{dy}{dx} = -F_r^2 \frac{dy}{dx}}$$

Eq. 13

- Here F_r is the local Froude number of the flow

The velocity of the flow in rectangular channel of constant width b is given by, I mean, V is small q / y . If we differentiate this also with respect to x , we can obtain dV / dx is equal to $-q / y^2 dy / dx$ and if you put back V , q is $V y$. So, if you put this in this equation, we get this one, so it will become $-V / y dy / dx$. So, if we multiply the above equation with V / g , this equation by V / g , we are able to obtain this equation.

So, $V / g dV / dx$, from here, and this also by V / g this will become $-V^2 / gy dy / dx$. and this V^2 / gy is Froude number whole square. So, actually we get $V / g dV / dx$ is equal to $-F_r^2 dy / dx$. I should take down all the ink. So, here F_r is the local Froude number of the flow. So, here F_r is the local Froude number of the flow, so equation number 13. So, you see equation number 13 is this and this is equation number 12.

(Refer Slide Time: 17:55)

91

Channel Depth variation

- Substituting Eq 13 into Eq 12 we obtain

$$\frac{dy}{dx} = \frac{(S_f - S_0)}{(1 - F_r^2)} \quad \text{Eq. 14}$$

- Rate of change of fluid depth (dy/dx) depends
 - Local slope of channel bottom S_0
 - Slope of energy line S_f
 - Froude number F_r
- The equation is also valid for channels with any constant cross sectional shape

Proceeding forward, if we substitute equation 13 into equation number 12, we can simply write, see, going to equation number 13. So, first we should know equation number 12. So, this is equation number 12, this value we already know. What is that? V / g into $dV / D x$ is equal to - Froude number square into dy / dx , minus Froude numbers square into $dy / d x$. So, we know this, minus Froude numbers square into dy / dx .

So, if we take dy / dx common, it will be $1 - \text{Froude number whole square}$ is equal to $S_f - S_0$ implies dy / dx is going to be $S_f - S_0$ divided by $1 - \text{Froude number whole square}$. So, and this

is exactly what we obtain, dy / dx is going to be $\frac{(S_f - S_0)}{(1 - F_r^2)}$. So, rate of change of fluid depth dy / dx depends upon, so if you look closely at this equation the rate of change of fluid depth or dy / dx .

Now, if you remember in the beginning we related all the type of flows like uniform flow or rapidly varied or gradually varied flow with this value of $dy / d x$. So, this dy / dx depends upon the local slope of the channel bottom, which is called S_0 , it also depends upon the slope of energy line S_f and it also depends upon the Froude number or Fraud number F_r . Now, this equation is also valid for channel of, is valid for channels with any constant cross sectional shape.

We derived this equation for a rectangular channel. However, it is valid for channels with any constant cross sectional shape. So, we have obtained the equation for dy / dx . Now, we will utilize this equation to study different dy by dx .

(Refer Slide Time: 20:44)

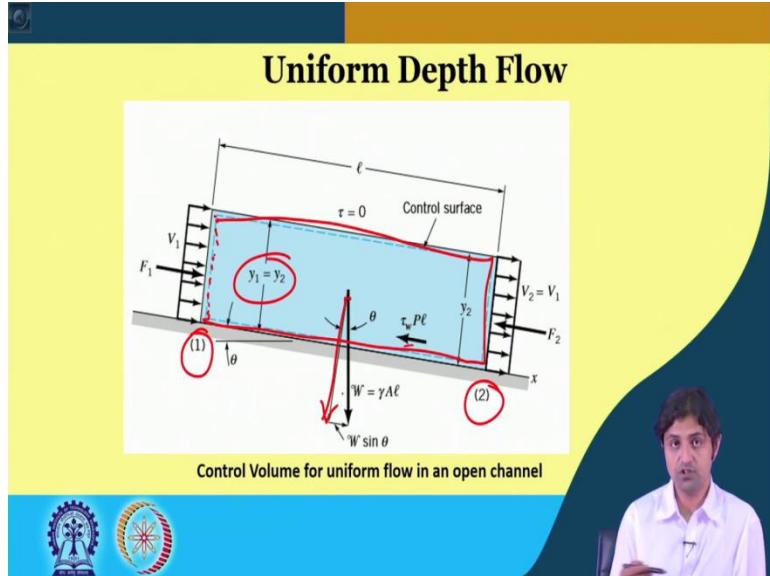
Uniform Depth Flow

- Several channels are designed to carry fluid at uniform depth along all their length
 - Irrigation Canals ?
 - Rivers ?
 - Creeks ?
- Uniform depth flow means $dy/dx = 0$. Can be made by adjusting bottom slope such that it equals the slope of energy line.
- y corresponding to uniform depth flow is called 'normal depth' denoted by y_0 *normal dept*

So, first thing that comes to mind is uniform depth flow. So, we know that there are several channels are designed to carry fluid at uniform depth along their channel, for example, irrigation canals, rivers, creeks. And uniform depth means the rate of change of y with respect to x is equal to 0, from equation number 14. So, if dy / dx is equal to 0 that means it is a uniform channel and this can be made by adjusting the bottom slope bottom slope.

Bottom slope is Z_0 because if we are going to design say an irrigation canal or something we can obviously change the angle of the, you know, the slope of the canal can be made by adjusting bottom slopes such that it equals the slope of this energy line for roughness, you know that can be known and we can calculate S_f So, if S_f is equal to S_0 , then we are going to have uniform flow conditions and then this y , which will correspond to this uniform depth flow is called normal depth and it is denoted by y not. So, important thing to note is, that the y which corresponds to a uniform depth flow is called normal depth and it is denoted by y not, normal depth.

(Refer Slide Time: 22:33)



So, now, this is a cross section and we are seeing the control volume for uniform flow in an open channel. You please, we get because we are going to derive this. So, if you look at this figure very carefully, you see this is the uniform section 1 here. This is a uniform section 2, F_1 is the force, which we are going to calculate, hydrostatic force V_1 is the velocity or depth is y and y_1 and y_2 , but since this is uniform depth, y_1 is equal to y_2 .

This is the control surface given by this one and this is the if the bed shear stress is τ_w and this theta is the slope, you know, the angle of the bed slope, if the weight is W , one of the components will be acting perpendicular to the, you know, surface and one will be acting along the surface. So, using the force balance and continuity equation we are going to derive something now, so, let us go and see.

(Refer Slide Time: 23:56)

Uniform Depth Flow

- Applying the x component of momentum equation on the control volume

$$\sum F_x = \rho Q (V_2 - V_1) = 0 \quad \text{since } V_1 = V_2$$

- There is no acceleration of fluid and momentum flux across section 1 is equal to that across section 2.
- Implies horizontal force balance

$$F_1 - F_2 - \tau_w Pl + W \sin \theta = 0 \quad \text{Eq. 15}$$

So, if we apply the x component of moment equation on this control volume. So, what we are going to see is sigma effects, that the net force is going to be rho Q v2 - v1, mass flux into v2 - v1, v2 is the velocity here and v 1 is here. And that is going to be 0, because v 1 is equal to v 2 in uniform flow, because we have taken the same y 1 is equal to y 2. So, the sum of the forces is going to be 0. There is no acceleration of the fluid and the momentum flux across section 1 is equal to that across the section 2.

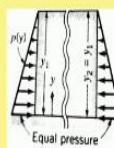
Implies there is a horizontal force balance given by F_x is equal to 0. So, simply writing, $F_1 - F_2$, F_1 is the force from section 1 hydrostatic force, F_2 is the force that is the force from the other side, that is, section 2, because the force acts normal, so it will be in the opposite direction at F_2 , if the shear stress at the bed is τ_w that will be acting against the flow so it will be in the negative direction. And the weight component of $\sin \theta$ will be in x direction and that will be towards the flow direction.

Just taking you back to the, you see here, $F_1 - F_2 - \tau_w Pl$ and this is the component mind, this is $W \sin \theta$ that is supporting the flow, this is the equation. Now, we need to know what F_1 , F_2 and another parameters are.

(Refer Slide Time: 25:48)

Uniform Depth Flow

- Here $F_1 - F_2 - \tau_w Pl + W \sin \theta = 0$ Eq. 15✓
- F_1 and F_2 are hydrostatic pressure forces
- $W \sin \theta$ is component of fluid weight acting down the slope
- $\tau_w Pl$ is the shear force on fluid. This acts up the slope trying to slow down the flow (viscous force)
- Since $y_1 = y_2$ i.e. flow is at uniform depth $F_1 = F_2$ $\tau_w = \frac{W \sin \theta}{Pl}$



Equal pressure distributions

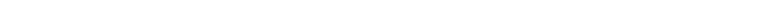
So, again rewriting the equation, $F_1 - F_2 - \tau_w Pl + W \sin \theta = 0$ and this is equation number 15. Here, F_1 and F_2 are hydrostatic pressure forces, as we have already told, $W \sin \theta$ is the component of fluid weight acting down the slope, $\tau_w Pl$ is the shear force on fluid, this acts up the slope trying to slow down the flow, this we have already talked about. This happens because of the viscous forces.

Since, y_1 is equal to y_2 , flow is at uniform depth. So, that means, F_1 is at uniform depth, $F_1 = F_2$. If, $y_1 = y_2$, $F_1 = F_2$. True. So, if $F_1 = F_2$, this gets cancelled out, so $\tau_w Pl$ will be $W \sin \theta$. So, τ_w can be written as $W \sin \theta / P$ into 1.

(Refer Slide Time: 27:03)

Uniform Depth Flow

- Here
 - θ is very small. Bottom slope is very small.
 - Therefore $\sin \theta \sim \tan \theta \sim S_0$
 - Putting $W = \gamma A l$ and Hydraulic Radius $R_h = A/P$

$$\tau_w = \frac{\gamma A l S_0}{P l} = \gamma R_h S_0 \quad \text{Eq. 16}$$


So, here theta is very small that means bottom slope is very, very small. Therefore, sin theta can be written as tan theta and that can be written as bottom slope S_0 . So, we can simply write

$$\tau_w = \frac{W \sin \theta}{P l}$$

. So, instead of sin theta we have written S_0 . Now, if we put the weight as gamma A into l, so weight is gamma A into length l. And if we say now we have defined something called hydraulic radius, which is called A by the parameter P.

P, if you see we have always constantly been writing about P and you would be wondering what that P actually is, right from the beginning. So, you know, the shear stress τ_w will act on the entire parameter. Which all parameters? That are the parameters which is wetted by the liquid. So, all those area where the water is, because the, so that is called the wetted parameter P. So, the parameter or the length across the entire, that is called the perimeter, which is, you know, wetted by the liquid.

So, if we put this term, so τ_w will be $\gamma A l S_0$ divided by $P l$. So, l and l can get cancelled and we have defined already A/P , this A/P as R_h . So, we can simply write, $\gamma R_h l S_0$ for uniform flow. So, shear stress will be $\gamma R_h l S_0$. And this is an important equation that is called equation number 16.

(Refer Slide Time: 29:34)

Uniform Depth Flow

- Open channels flows are mostly Turbulent
 - Reynolds number lies fully in turbulent regime
- Here, we draw analogy from Pipe flow for turbulent flow
 - For very large R_e , friction factor f for pipe flows is independent of R_e and dependent only upon relative roughness, ϵ/D
 - The wall shear stress is proportional to dynamic pressure $\rho V^2/2$ and independent of the viscosity.

$\tau_w = K \rho \frac{V^2}{2}$

K is a constant
Depends upon pipe roughness

So, open channels are actually mostly turbulent and the Reynolds number lies fully in the turbulent regime. So, here what we are going to do and actually we are going to see the analogy from the pipe flow, which we will actually study as well. So, for a very large Reynolds number, friction factor f for pipe flow is independent of Reynolds number that is what we know. So, for very large Reynolds number, friction factor f for pipe flow is independent of Reynolds number and dependent only upon the relative roughness, ϵ/D .

And the wall shear stress is proportional to dynamic pressure $\rho V^2/2$ and is independent of the viscosity; we know this from pipe flow. And we, we as in the scientists' community had applied this analogy to open channel flow. So, using this analogy we can say that τ_w can be written as $K \rho V^2/2g$, K is a constant and it depends upon the pipe roughness, but this is just an assumption.

(Refer Slide Time: 30:52)

Uniform Depth Flow

- Open channels flows are mostly Turbulent
 - Reynolds number lies fully in turbulent regime
- Here, we draw analogy from Pipe flow for turbulent flow
 - For very large R_e , friction factor f for pipe flows is independent of R_e and dependent only upon relative roughness, ϵ/D
 - The wall shear stress is proportional to dynamic pressure $\rho V^2/2$ and independent of the viscosity.

$\tau_w = K \rho \frac{V^2}{2}$

K is a constant
Depends upon pipe roughness

So, assuming similar dependence for high Reynolds number in open channel flows equation 16. You see, this equation 16 here, can be rewritten as, this one we already found, right hand side of equation, left hand side we substitute by $K \rho \frac{V^2}{2}$ and we get something like V is equal to C , another constant C . So, we write $\gamma / K \rho, 2 \gamma$ divided by $K \rho$ whole root as C . And this equation is the Chezy's equation and C is called the Chezy coefficient. That is an important equation.

So, V the velocity can be written as C under root $R h S 0$, where $R h$ is the hydraulic radius. It was developed by a French engineer named Chezy while designing the canal, C is generally determined from the experiments. Now, you can find the dimensions yourself, you have done the dimensional analysis. If somebody is not able to, you can ask that to me in the forum. However, I erase this.

So, now, there is, you know, something called Manning equation. We have studied the Chezy's equation. We will be ending the class, this lecture right now and we will start our next lecture by discussing what a Manning's equation and Manning's number is. Thank you so much for listening. I will see you in the next lecture.