
Discrete Mathematics
Prof. Ashish Choudhury

International Institute of Information Technology, Bangalore

Lecture - 64
Discrete Logarithm and Cryptographic Applications

 (Refer Slide Time: 00:22)

Hello, everyone, welcome to this lecture. So, in this lecture we will continue our discussion on

cryptography. And we will see some more applications of the concept from number theory and

abstract algebra in the context of cryptography. Namely, we will see the definition of public

key cryptosystem. And we will see 2 very popular instantiations of public key cryptosystem,

namely that of ElGamal encryption scheme and RSA encryption scheme.

(Refer Slide Time: 00:48)

903

So, let us start with the definition of public key cryptography. What exactly is public key

cryptography? Why exactly we need that and so on? So, this is the Diffie Hellman key

exchange protocol which allows 2 parties, Sita and Ram to talk over the internet publicly and

agree upon a common key k. And if we perform all the operations over a sufficiently large

group where a random instance of discrete log problem is very difficult and any third party in

a reasonable amount of time will not be able to come up with the value of key that is Sita and

Ram have agreed upon.

So, even though this is a very breakthrough result because before the invention of the Diffie

Hellman key exchange protocol, people simply thought that it is not at all possible to solve the

key agreement problem. But now Diffie and Hellman showed that, indeed it is possible to agree

upon a key by talking publicly.

But the downside of the Diffie Hellman key exchange protocol is that it requires both the parties

to be online. So, imagine the 2 parties in different time zones then it hinders the spontaneity of

applications like email. So, for instance, if Sita and Rama are in 2 different time zones and Sita

wants to send an encrypted mail to Ram then Sita will initiate a Diffie Hellman key exchange

protocol instance with Ram, she will send her message namely  to Ram.

But now it might be the case that when  is delivered to Ram, Ram is sleeping because Ram

is in a different time zone. Until and unless Ram also gets up and communicate back, , Sita

cannot use the key  beta for encrypting her email. So, in that sense, the spontaneity of the

application is lost here in. So that is why to get around this problem, Diffie and Hellman

proposed an architecture for a new type of cryptosystem which is different from symmetric key

cryptosystem.

So, remember, the symmetric key cryptosystem, the same key is used both for encryption and

decryption. So, we were looking for a mechanism where the key, , will be used for

encrypting the email, as well as for decrypting the email. But Diffie and Hellman were thinking

about a new form of cryptography. And today, we call such cryptosystems, such forms of

algorithms, such form of cryptographic algorithms as public key cryptosystem.

(Refer Slide Time: 03:22)

904

So, let us see the architecture of public key cryptosystem. So, in this system, the receiver will

have 2 keys, a key which we call us public key, pk available in the public domain. And there

will be another key, sk which will be secret key and available only with the receiver. Now in

this system, any person who wants to encrypt a message for this receiver will look for the copy

of the public key in some public domain, say for example, a telephone directory or the

homepage of the receiver.

Once the public key copy is available to the sender and sender has the plain text m, he will use

the encryption algorithm and produce a cipher text or the scrambled text which is

communicated to the receiver. Receiver upon receiving the scrambled text, will now use a

different key, namely the secret key which is available only with the receiver and he will

decrypt and recover back the message m.

And now the security property that we require here is that if there is a third party an attacker,

who knows the description of the public key, who knows the description of the encryption

algorithm, who knows the description of the decryption algorithm and who also knows the

description of the cipher text, should not be able to figure out what exactly in the underline

message. Because the secret key is not known to him. That is a loose Security property that we

require here.

So, the analogy that I can give here is the following, you can imagine that receiver has created

multiple copies of a padlock, all of which can be opened using a single key. And now, the

public key is nothing but copies of that padlocks, but in an open state. If I am a sender and I

905

want to communicate some message secretly to the receiver, what I will do is, I will take, I will

take one copy of that open padlock, I will take the message and keep it inside a box.

And now I will lock the box using that padlock by pressing the padlock. So that is equivalent

to saying that I have encrypted my message. Now when that locked box reaches the receiver,

receiver has to open the padlock and that, he can do by using the secret key which is available

with the receiver. So that is the analogy and this is different from your symmetric key

cryptosystem where both sender and receiver are using the same key for opening the locked

box as well as for closing the locked box.

So, for the moment, just imagine that, we have a public key cryptosystem namely, we have an

instantiation of public key cryptosystem. But even if I assume that we do not have an

instantiation of public key cryptosystem, if at all this architecture is realizable, it has got

tremendous potentials. It has got tremendous potential in the sense that, now the whole problem

of key distribution is easily solved.

If I am a receiver, and if I am a amazon, for instance, I do not have to worry, who is the potential

sender, he can be any entity from the world. Whoever wants to communicate with me, I just

have to publish my public key for him which I can do once for all. And then anyone who wants

to communicate to me has just have to use that public key, encrypt a message and communicate

to me. So, in some sense, the problem of key agreement is solved.

And I do not need to have a dedicated secret key with each and every entity in this universe, I

will just have a secret key and the corresponding public key can serve the role of the encryption

key for every potential user with whom I want to do a secure communication. So, even though

Diffie and Hellman thought about this architecture, this new system, they failed to give a

concrete instantiation.

Namely, a concrete encryption algorithm, concrete decryption algorithm, a concrete

mechanism of coming up with a public key and a concrete mechanism of coming up with a

secret key. And the race for coming up with the first instantiation of public key cryptosystem

was won by another Turing Award winner triplet namely, RSA which we will discuss very

soon. But the interesting feature here, the interesting fact here is that, even though Diffie and

Hellman failed to come up with a concrete instantiation of above architecture, it was hidden in

906

their key exchange protocol itself, it was. So, what we are going to do next is, we will again

recall their key exchange protocol, the Diffie Hellman key exchange protocol and then we will

see that how by doing a minor tweak, a minor modification to the key exchange protocol, we

can get an instantiation of public key cryptosystem. But unfortunately, Diffie and Hellman

failed to realize that.

(Refer Slide Time: 08:40)

So, this encryption scheme is called as ElGamal encryption scheme attributed to Tahir Elgamal,

who made this very crucial observation regarding the Diffie Hellman key exchange protocol

and what exact modification needs to be done. So, this was the Diffie Hellman key exchange

protocol, Sita sends her mixture namely , Ram sends his mixture , were alpha and beta

are individual components picked by Sita and Ram and the final key .

Now, the whole process can be visualized as an instance of public key encryption scheme as

follows. The intuition is the following. If  is a common key which is going to be agreed

upon between Sita and Ram and we know that if the discrete log problem is difficult to solve

in my group, then any third party who has monitored the communication will be unable to

compute  or the key k in a reasonable amount of time, then I can use the same key k for

encrypting the message.

So, for instance, if Sita is the receiver and Ram is the sender and if sender is having a plain text

m and again imagine that it is an element of the group g over which all the operations are

performed then, what sender can do is the following. It can use the key, k namely  for

masking the message.

907

By masking the message I mean, here that perform the group operation between the plain text

which is a member of the group and the key, k as well where key k is the element of the group

as well. So that will give another group element, denote it as c. So, c will be the encryption of

the message and now, how Sita can decrypt back the plain text. So, for recovering the plain

text, Sita has to unmask the effect of key because the message is been masked with key.

So, if the key is unmasked, the effect of mask will go away and Sita will be able to recover

back the plain text. And for doing that unmasking here, is nothing but taking the element c and

performing the group operation with c and the inverse of k. Because if I perform the group

operation on c and inverse of k then the effect of k and k cancels out. And what I will be left

with is the plaintext m which sender wants to encrypt.

(Refer Slide Time: 11:23)

So, now let us see the whole thing as an instance of a public key cryptosystem. So, this was the

message which sender, so, I am treating Ram as the sender here and I am treating Sita as the

receiver. So, the crucial observation of Tahir Elgamal was the following. I can imagine Sita or

receiver sending our contribution for Diffie Hellman key exchange protocol once for all, for

every potential sender.

So, right now what is happening is, depending upon Ram, Sita was picking alpha and

contributing g power alpha. So, if there are multiple Rams, she will be picking multiple alphas,

independent alphas and will be sending 1 to first Ram, 2 to the second Ram and so on.

The key observation here is that, do not do that for every potential Ram, in fact, it is not even

908

required that who is going to be Ram, let receiver or Sita start executing her instance of Diffie

Hellman protocol once for all.

Namely, whatever is her contribution for the Diffie Hellman key and what exactly I mean by

contribution? Our contribution was . So, you can imagine that in the Diffie Hellman key

exchange protocol, there are two contributions contribution  coming from Sita’s site,

contribution g power beta coming from Ram site and both these contributions are somehow

combined to get the overall key .

So, what Elgamal proposed is that, let receiver makes her contribution, public once for all.

Namely, she picks some random alpha as her secret key and makes  available in the public

domain as her public key. So, it is as good as saying that, she is declaring publicly that, I would

not be again and again participating in different instances of Diffie Hellman key exchange

protocol, whoever is going to be Ram, just to think as if I am going to send  to you, if I

would have participated in the Diffie Hellman key exchange protocol.

That is the way public key and secret key will be picked by our receiver. Now, imagine there

is a sender, Ram who has a plain text m, he wants to encrypt the plaintext m. How he can do

that? Ram will now do his part of the Diffie Hellman key exchange protocol, namely, he will

give his contribution which is g power beta.

And now Ram knows that once he sends  to Sita, using  which Sita anyhow has made

public and treating  as a message coming from Ram, Sita will be able to compute the key,

. So, what Ram can do is, once he has sent , he can use k namely,  for encrypting

the message.

And the overall encryption of the plain text will be now two messages. The first message will

be Rams contribution for the Diffie Hellman key exchange protocol. And the second message

is the actual encryption of the message. How Sita will be doing the decryption? So, this is the

encryption process, sending his contribution of Diffie Hellman key exchange protocol and then

masking of the message this whole thing can be visualized as encryption of the plain text.

909

The decryption happens as follows, Sita computes the key k, assuming that Ram has

participated in an instance of Diffie Hellman key exchange protocol. So, she will be able to

compute . So, for that, she has to take her secret key and raised that secret key, she has to

take the first component of the cipher text, namely c1 and raise it to her secret key which will

give her the common key .

And now she can unmask it by taking the second component of the cipher text. And performing

the group operation with k inverse where, k inverse she has computed in the previous step. So,

that will be the decryption process for Sita. A very cool observation which unfortunately Diffie

and Hellman missed. And that is why Taher Elgamal got whole credit of inventing this

cryptosystem.

And now, why this whole process, whole mechanism will be a secure mechanism? So, imagine

there is a third party or Ravana, will he be able to find anything about the message m in the

reasonable amount of time? Well, the only way he can learn anything about the message m is

by learning the key k. But for learning the key k, he has to actually attack the Diffie Hellman

key exchange protocol or he has to solve instances of discrete log problem. So, assuming that

solving random instances of discrete log problem is difficult, this whole process is indeed an

instance of public key cryptosystem.

(Refer Slide Time: 16:38)

So, now, as I said earlier that, race for coming up with a first instantiation of public key

cryptosystem was won by another Turing Award winner triplet, namely RSA, Rivest, Shamir

and Adleman. Now, let me give you briefly a description of the RSA public key cryptosystem,

910

again which is based on several interesting results from number theory that we have discussed.

So, let me recall the group ∗ and some concepts related to the group ∗.

So, recall the definition of the ∗ is the collection of all the values in the range 1 to N - 1

which are co prime to your modulus N. So, for instance, the set Z 10 star will have the elements

1, 3, 7, 9, it would not have the element 2 because 2 is not co prime to 10. It would not have

the element 4, it would not have the element 5, 6, 8 because all of them are not co prime to 10.

It turns out that if your modulus N is a prime then, ∗ is nothing but a set 1 to N - 1.

And we already proved in one of our earlier lectures that, the group ∗ along with operation

multiplication modulo N constitutes a group. So, the order of this group ∗ namely the

number of elements in the set 1 to N - 1 which are co prime to N which is also the order of the

group ∗ is called as the Euler totient function, denoted by this () function. And there are

formulas for calculating the size or the order of the group ∗ depending upon the value of N.

So, the interesting cases are the following, if N is a prime number then the order of the

corresponding group phi p star is p - 1 or equivalently they are p - 1 elements in the range 0 to

p - 1 which are co prime to p. Whereas, the case which we will be using in the context of RSA

cryptosystem is N is the product of distinct prime numbers p and q. So, if N is the product of

distinct prime numbers p and q then the size of the group ∗ is being product of p - 1 and q -

1.

And this can be proved using the principle of mutual inclusion exclusion that we had discussed

in one of our earlier modules. So, if you want to verify this, consider N = 10 which is the

product of 2 and 5. And then, we know that there are 4 elements in Z 10 star namely, the order

of Z 10 star is 4, so, I should get phi of 10 is 4 and indeed, phi of 10 is 4 because it is 2 - 1

multiplied with 5 - 1.

And we know that, if I take any element a in the group ∗ then, ()   is 1. And this

can be proved in multiple ways, I can use the following result from abstract algebra. I know

that the order of the group ∗ is ϕ(N) because that is what is the definition of ϕ(N) and element

1, the numeric element, the numerical 1 is actually the identity element of this group ∗.

911

And I know that you take any group element, irrespective of what is the order of that group

element a to the power order of the group, will always give you the identity element. So, p of

N is the order of the group, a is an element, so, it does not matter what is the order of a,

irrespective of whatever is the order of a, I know a raised to the power order of the group is 1

and a raised to the power order is nothing but ().

Based on this theorem, I can say the following. If I want to compute    then, in the

exponent I can perform modulo ϕ(N) because I can rewrite a power x as several blocks of a

power ϕ(N) a power ϕ(N) and like that and the last block consisting of a power x modulo ϕ(N).

Each of these blocks with a power ϕ(N) will give me the identity element 1, 1, 1 and I will be

left only with the last block which has a power x modulo ϕ(N).

(Refer Slide Time: 21:24)

So, now let me introduce RSA function which forms the basis of RSA public key cryptosystem.

This is a function from the set ∗ → ∗. Then, how exactly is this function defined? So,

imagine you have a public exponent e, this is not identity element, this is some notation, this is

an exponent e which is we are going to use in the function. And this exponent e is relatively

prime to ϕ(N), I stress it is not relatively prime to N, it is relatively prime to ϕ(N).

Now, since e is co prime to ϕ(N), it will have a multiplicative inverse. I call that multiplicative

inverse as d, so, since e and d are multiplicative inverse of each other, this relationship hold.

Now, the RSA function in the forward direction is the following. If I want to compute the

output of the RSA function for x then that is same as computing  . So, remember x is

a member of ∗ and hence   will also be an element of ∗.

912

Because my underlying operation is multiplication modulo N and x power e is like performing

the group exponentiation. Whereas, my reverse function from ∗ → ∗ to will be the

following. If I have a value y and if I want to invert it, I compute   . So, I can prove

that the function  in the reverse direction is actually the inverse of the function  in the

forward direction.

And the way we can prove it is as follows. So, you take any arbitrary x and suppose, for that

arbitrary x, the forward direction function gives you the output y. So, y =  . What I

have to show is that, now if I invert this y, namely   as per the inverse function, I

should get back my x. So, let us do that. So, let us try to invert the value of y.

So, let me write down the value of y, y is nothing but   and then whole thing raised to

the power d then, I can apply the rules of group exponentiation and say that this is nothing but

  . And remember that () is 1 because x is an element of ∗. That is what we

discussed in the previous slide. So,   will give the same answer as if x to the power

in the exponent, I do   () that means, I can reduce the exponent itself modulo ϕ(N).

But   () is 1 that means, this   () is 1, so, this is nothing but   

and which is strictly x because if x was a member of ∗ that means, x was strictly less than

N. So, if x is strictly less than N then, the effect of mod would not take an x modulo N will be

same as x. So that shows that these functions  and  they are inverse of each other. So, if

you go to the forward direction through , you can always come back in the reverse direction

through .

(Refer Slide Time: 24:57)

913

Now, based on all these things, let us introduce a computational problem which we believe is

really difficult to solve. It is like your discrete log problem. So, we know that there are certain

groups where solving discrete log instance is really difficult. In the same way RSA introduced

a computational problem which we believe to be difficult to solve. Difficult to solve in the

sense, in the reasonable amount of time, a practical amount of time, we may not be able to

solve it.

I am not saying it is impossible to solve it, you can always solve it by doing a brute force, but

the brute force algorithm will take enormously large amount of time. If we operate on very

large numbers. So, the problem instance is as follows. So, we first define what we call RSA

parameter generation algorithm. So, this is parameter generation. So, to generate the

parameters, we randomly pick some n-bit prime numbers p and q.

And then we compute the modulus which is the product of p and q, we compute a value of

ϕ(N). Since, N is the product of prime numbers p and q which are distinct, by the way, we will

ensure that p and q are distinct. So, p and q are distinct, the value of () = ( − ) ⋅ ( −

). We will pick an exponent e which is co prime to ϕ(N). And since e is co prime to ϕ(N), we

will be able to compute its multiplicative inverse modulo ϕ(N) by running extended Euclid’s

algorithm.

And finally, the output of this parameter generation algorithm is the modulus, the prime factors

of the modulus, the public exponent e and the secret exponent d. What do I mean by public and

secret it will be clear soon. So, the RSA problem is the following. If I give you the modulus,

914

but not its prime factors and if I give you the public exponent in that sense, it is public, it will

be known to you and it will be known that how exactly this parameters N and e are generated.

What would not be known to you are the prime factors of N.

And if the prime factors of N are not known, you would not be knowing the value of ϕ(N) and

the value of ϕ(N) is not known to you, you would not be knowing the value of d. So, d is not

known, ϕ(N) is not known, p and q are not known. Now, the problem instance is the following.

I will be giving you a random element from my group

∗ and your goal will be to compute the inverse function, output of the inverse function that

we had just seen, for the randomly chosen y.

Namely, your goal will be to compute    where d is not given to you and   

is nothing but computing y raised to power 1 over e where 1 over e is not numeric 1 over e but

it is actually the multiplicative inverse of d, so, multiplicative inverse of d is nothing but, so, d

and e, they are multiplicative inverse of each other. So, computing d is nothing but computing

/ .

So, basically I am asking you to compute the eth root of    and I want you to solve this

problem instance in polynomial of n number of time where n is the number of bits that I used

to represent p and q that means, my p and q are n-bit numbers. So, one way of solving this

problem instance is that you are able to factorize N. So, suppose you are able to factorize N in

polynomial amount of time namely, you are able to compute p and q in polynomial amount of

time.

Once you are able to compute p and q you will be able to compute ϕ(N) easily. And since you

know e and if you know ϕ(N), you yourself can run the extended Euclid’s algorithm and

compute d in polynomial amount of time and then you yourself can compute . But it turns

out that factoring very large numbers is believed to be an extremely hard problem, specifically,

with the current computing power.

If I select my p and q to be as large as say, 512 bit prime numbers then my N will be an

extremely large modulus then factorizing that extremely large modulus will be very time

915

consuming process and hence you would not be able to solve and random instance of the RSA

problem.

(Refer Slide Time: 29:48)

So, now based on whatever theory we have discussed, let us see the concrete steps of the RSA

public key cryptosystem. So, remember, we have a function in the forward direction from

∗ → ∗ namely, x power e modulo N and a reverse function is y power d modulo N. And

we also have discussed RSA problem where if I do not give you the value of the secret exponent

d then, computing    is very time consuming that is what is the general belief.

Now, the way RSA cryptosystem works is as follows. So, remember, there is a sender and a

receiver. So, what receiver will do is the following. Receiver will run the parameter generation

algorithm. Namely, it will pick a random prime number p, a random prime number q, will

compute its product, will pick an index e which is relatively prime to ϕ(N). So, he can compute

ϕ(N) because he himself has picked p and q.

And once he has picked e, he knows ϕ(N), he can compute d as well. And then he will set pk

or the encryption key to be (N, e) and he will set as the decryption key to (N, d). So, d is kept

with himself, e is made public and N is also made public. If there is a sender, who has a plain

text m and which it wants to encrypt then, encryption of m is nothing but computing the forward

direction function as per the RSA function, namely, just output   .

And if there is a receiver who obtains the cipher text c and who has the secret decryption key

d then to get the cipher text, tend to recover back the message encrypted in c, he has to basically

916

compute the inverse function for the c, inverse function is computable, if d is available and if

d is available with the receiver, he can easily compute    and get back the message.

Now, why this is called as a textbook cryptosystem? Because this is not precisely the way we

use RSA public key cryptosystem in practice.

There are lots of shortcomings. One very important one, a very bad feature of the way RSA

cryptosystem is proposed is given here and if I use here, the major shortcoming here is that, it

is deterministic. It is deterministic in the sense that, if there is a sender S and suppose, he wants

to send the same message m after every one hour. Then, if you encrypt the same message m

using the public key (N, e), every time he will be producing the same c. So, the first time he

wants to encrypt a message m, he will send c.

Next time he wants to send a message m using the same key, he will be again sending the c,

again next time he wants to send the same message m, he will be sending the c, this itself is a

lot of information for the third party or the attacker. He may not be able to learn the exact value

of the message m. But he will be coming to know that actually it is the same message m which

has been encrypted and communicated to the receiver.

And depending upon my underlying application, this itself can be a breach of security. Ideally,

I am looking for a process where, even if the same message m is encrypted using the same

public key multiple times, it should produce different cipher texts with high probability. But

that is not the feature available with the way RSA public key cryptosystem was invented. But

we can of course get rid of this shortcoming and actual way in which we used RSA public key

cryptosystem is different from the way it is proposed here.

But this forms the basis of the RSA public key cryptosystem, a very interesting public key

cryptosystem. So, with that, I conclude today’s lecture. Just to summarize, in this lecture, we

discussed about public key cryptosystem and we discussed two popular instantiations of public

key cryptosystem namely, we have discussed ElGamal encryption scheme and we have

discussed RSA public key cryptosystem. Thank you!

917

