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Hello, everyone, welcome to this lecture. So, in this lecture we will continue our discussion on 

cryptography. And we will see some more applications of the concept from number theory and 

abstract algebra in the context of cryptography. Namely, we will see the definition of public 

key cryptosystem. And we will see 2 very popular instantiations of public key cryptosystem, 

namely that of ElGamal encryption scheme and RSA encryption scheme. 
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So, let us start with the definition of public key cryptography. What exactly is public key 

cryptography? Why exactly we need that and so on? So, this is the Diffie Hellman key 

exchange protocol which allows 2 parties, Sita and Ram to talk over the internet publicly and 

agree upon a common key k. And if we perform all the operations over a sufficiently large 

group where a random instance of discrete log problem is very difficult and any third party in 

a reasonable amount of time will not be able to come up with the value of key that is Sita and 

Ram have agreed upon.  

 

So, even though this is a very breakthrough result because before the invention of the Diffie 

Hellman key exchange protocol, people simply thought that it is not at all possible to solve the 

key agreement problem. But now Diffie and Hellman showed that, indeed it is possible to agree 

upon a key by talking publicly. 

 

But the downside of the Diffie Hellman key exchange protocol is that it requires both the parties 

to be online. So, imagine the 2 parties in different time zones then it hinders the spontaneity of 

applications like email. So, for instance, if Sita and Rama are in 2 different time zones and Sita 

wants to send an encrypted mail to Ram then Sita will initiate a Diffie Hellman key exchange 

protocol instance with Ram, she will send her message namely  to Ram. 

 

But now it might be the case that when    is delivered to Ram, Ram is sleeping because Ram 

is in a different time zone. Until and unless Ram also gets up and communicate back, , Sita 

cannot use the key    beta for encrypting her email. So, in that sense, the spontaneity of the 

application is lost here in. So that is why to get around this problem, Diffie and Hellman 

proposed an architecture for a new type of cryptosystem which is different from symmetric key 

cryptosystem. 

 

So, remember, the symmetric key cryptosystem, the same key is used both for encryption and 

decryption. So, we were looking for a mechanism where the key, , will be used for 

encrypting the email, as well as for decrypting the email. But Diffie and Hellman were thinking 

about a new form of cryptography. And today, we call such cryptosystems, such forms of 

algorithms, such form of cryptographic algorithms as public key cryptosystem. 

(Refer Slide Time: 03:22) 
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So, let us see the architecture of public key cryptosystem. So, in this system, the receiver will 

have 2 keys, a key which we call us public key, pk available in the public domain. And there 

will be another key, sk which will be secret key and available only with the receiver. Now in 

this system, any person who wants to encrypt a message for this receiver will look for the copy 

of the public key in some public domain, say for example, a telephone directory or the 

homepage of the receiver. 

 

Once the public key copy is available to the sender and sender has the plain text m, he will use 

the encryption algorithm and produce a cipher text or the scrambled text which is 

communicated to the receiver. Receiver upon receiving the scrambled text, will now use a 

different key, namely the secret key which is available only with the receiver and he will 

decrypt and recover back the message m. 

 

And now the security property that we require here is that if there is a third party an attacker, 

who knows the description of the public key, who knows the description of the encryption 

algorithm, who knows the description of the decryption algorithm and who also knows the 

description of the cipher text, should not be able to figure out what exactly in the underline 

message. Because the secret key is not known to him. That is a loose Security property that we 

require here. 

 

So, the analogy that I can give here is the following, you can imagine that receiver has created 

multiple copies of a padlock, all of which can be opened using a single key. And now, the 

public key is nothing but copies of that padlocks, but in an open state. If I am a sender and I 
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want to communicate some message secretly to the receiver, what I will do is, I will take, I will 

take one copy of that open padlock, I will take the message and keep it inside a box. 

 

And now I will lock the box using that padlock by pressing the padlock. So that is equivalent 

to saying that I have encrypted my message. Now when that locked box reaches the receiver, 

receiver has to open the padlock and that, he can do by using the secret key which is available

with the receiver. So that is the analogy and this is different from your symmetric key 

cryptosystem where both sender and receiver are using the same key for opening the locked 

box as well as for closing the locked box. 

 

So, for the moment, just imagine that, we have a public key cryptosystem namely, we have an 

instantiation of public key cryptosystem. But even if I assume that we do not have an 

instantiation of public key cryptosystem, if at all this architecture is realizable, it has got 

tremendous potentials. It has got tremendous potential in the sense that, now the whole problem 

of key distribution is easily solved. 

 

If I am a receiver, and if I am a amazon, for instance, I do not have to worry, who is the potential 

sender, he can be any entity from the world. Whoever wants to communicate with me, I just 

have to publish my public key for him which I can do once for all. And then anyone who wants 

to communicate to me has just have to use that public key, encrypt a message and communicate 

to me. So, in some sense, the problem of key agreement is solved. 

 

And I do not need to have a dedicated secret key with each and every entity in this universe, I 

will just have a secret key and the corresponding public key can serve the role of the encryption 

key for every potential user with whom I want to do a secure communication. So, even though 

Diffie and Hellman thought about this architecture, this new system, they failed to give a 

concrete instantiation. 

 

Namely, a concrete encryption algorithm, concrete decryption algorithm, a concrete 

mechanism of coming up with a public key and a concrete mechanism of coming up with a 

secret key. And the race for coming up with the first instantiation of public key cryptosystem 

was won by another Turing Award winner triplet namely, RSA which we will discuss very 

soon. But the interesting feature here, the interesting fact here is that, even though Diffie and 

Hellman failed to come up with a concrete instantiation of above architecture, it was hidden in 
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their key exchange protocol itself, it was. So, what we are going to do next is, we will again 

recall their key exchange protocol, the Diffie Hellman key exchange protocol and then we will 

see that how by doing a minor tweak, a minor modification to the key exchange protocol, we 

can get an instantiation of public key cryptosystem. But unfortunately, Diffie and Hellman 

failed to realize that. 

(Refer Slide Time: 08:40) 

 

So, this encryption scheme is called as ElGamal encryption scheme attributed to Tahir Elgamal,

who made this very crucial observation regarding the Diffie Hellman key exchange protocol 

and what exact modification needs to be done. So, this was the Diffie Hellman key exchange 

protocol, Sita sends her mixture namely  , Ram sends his mixture , were alpha and beta 

are individual components picked by Sita and Ram and the final key  . 

 

Now, the whole process can be visualized as an instance of public key encryption scheme as 

follows. The intuition is the following. If   is a common key which is going to be agreed 

upon between Sita and Ram and we know that if the discrete log problem is difficult to solve 

in my group, then any third party who has monitored the communication will be unable to 

compute   or the key k in a reasonable amount of time, then I can use the same key k for 

encrypting the message.  

 

So, for instance, if Sita is the receiver and Ram is the sender and if sender is having a plain text 

m and again imagine that it is an element of the group g over which all the operations are 

performed then, what sender can do is the following. It can use the key, k namely   for 

masking the message. 
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By masking the message I mean, here that perform the group operation between the plain text 

which is a member of the group and the key, k as well where key k is the element of the group 

as well. So that will give another group element, denote it as c. So, c will be the encryption of 

the message and now, how Sita can decrypt back the plain text. So, for recovering the plain 

text, Sita has to unmask the effect of key because the message is been masked with key. 

 

So, if the key is unmasked, the effect of mask will go away and Sita will be able to recover 

back the plain text. And for doing that unmasking here, is nothing but taking the element c and 

performing the group operation with c and the inverse of k. Because if I perform the group 

operation on c and inverse of k then the effect of k and k cancels out. And what I will be left 

with is the plaintext m which sender wants to encrypt. 

(Refer Slide Time: 11:23) 

 

So, now let us see the whole thing as an instance of a public key cryptosystem. So, this was the 

message which sender, so, I am treating Ram as the sender here and I am treating Sita as the 

receiver. So, the crucial observation of Tahir Elgamal was the following. I can imagine Sita or 

receiver sending our contribution for Diffie Hellman key exchange protocol once for all, for 

every potential sender. 

 

So, right now what is happening is, depending upon Ram, Sita was picking alpha and 

contributing g power alpha. So, if there are multiple Rams, she will be picking multiple alphas, 

independent alphas and will be sending 1  to first Ram, 2  to the second Ram and so on. 

The key observation here is that, do not do that for every potential Ram, in fact, it is not even 
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required that who is going to be Ram, let receiver or Sita start executing her instance of Diffie 

Hellman protocol once for all. 

 

Namely, whatever is her contribution for the Diffie Hellman key and what exactly I mean by 

contribution? Our contribution was . So, you can imagine that in the Diffie Hellman key 

exchange protocol, there are two contributions contribution  coming from Sita’s site,

contribution g power beta coming from Ram site and both these contributions are somehow 

combined to get the overall key  . 

 

So, what Elgamal proposed is that, let receiver makes her contribution, public once for all. 

Namely, she picks some random alpha as her secret key and makes  available in the public 

domain as her public key. So, it is as good as saying that, she is declaring publicly that, I would 

not be again and again participating in different instances of Diffie Hellman key exchange 

protocol, whoever is going to be Ram, just to think as if I am going to send  to you, if I 

would have participated in the Diffie Hellman key exchange protocol.  

 

That is the way public key and secret key will be picked by our receiver. Now, imagine there 

is a sender, Ram who has a plain text m, he wants to encrypt the plaintext m. How he can do 

that? Ram will now do his part of the Diffie Hellman key exchange protocol, namely, he will 

give his contribution which is g power beta. 

 

And now Ram knows that once he sends  to Sita, using  which Sita anyhow has made 

public and treating  as a message coming from Ram, Sita will be able to compute the key, 

. So, what Ram can do is, once he has sent , he can use k namely,  for encrypting 

the message. 

 

And the overall encryption of the plain text will be now two messages. The first message will 

be Rams contribution for the Diffie Hellman key exchange protocol. And the second message 

is the actual encryption of the message. How Sita will be doing the decryption? So, this is the 

encryption process, sending his contribution of Diffie Hellman key exchange protocol and then 

masking of the message this whole thing can be visualized as encryption of the plain text. 
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The decryption happens as follows, Sita computes the key k, assuming that Ram has 

participated in an instance of Diffie Hellman key exchange protocol. So, she will be able to 

compute  . So, for that, she has to take her secret key and raised that secret key, she has to 

take the first component of the cipher text, namely c1 and raise it to her secret key which will 

give her the common key  . 

 

And now she can unmask it by taking the second component of the cipher text. And performing 

the group operation with k inverse where, k inverse she has computed in the previous step. So, 

that will be the decryption process for Sita. A very cool observation which unfortunately Diffie 

and Hellman missed. And that is why Taher Elgamal got whole credit of inventing this 

cryptosystem. 

 

And now, why this whole process, whole mechanism will be a secure mechanism? So, imagine 

there is a third party or Ravana, will he be able to find anything about the message m in the 

reasonable amount of time? Well, the only way he can learn anything about the message m is 

by learning the key k. But for learning the key k, he has to actually attack the Diffie Hellman 

key exchange protocol or he has to solve instances of discrete log problem. So, assuming that 

solving random instances of discrete log problem is  difficult, this whole process is indeed an 

instance of public key cryptosystem. 

(Refer Slide Time: 16:38) 

 

So, now, as I said earlier that, race for coming up with a first instantiation of public key 

cryptosystem was won by another Turing Award winner triplet, namely RSA, Rivest, Shamir 

and Adleman. Now, let me give you briefly a description of the RSA public key cryptosystem, 
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again which is based on several interesting results from number theory that we have discussed. 

So, let me recall the group ∗ and some concepts related to the group  ∗. 

 

So, recall the definition of the  ∗ is the collection of all the values in the range 1 to N - 1 

which are co prime to your modulus N. So, for instance, the set Z 10 star will have the elements 

1, 3, 7, 9, it would not have the element 2 because 2 is not co prime to 10. It would not have 

the element 4, it would not have the element 5, 6, 8 because all of them are not co prime to 10. 

It turns out that if your modulus N is a prime then, ∗ is nothing but a set 1 to N - 1. 

 

And we already proved in one of our earlier lectures that, the group  ∗ along with operation 

multiplication modulo N constitutes a group. So, the order of this group  ∗ namely the 

number of elements in the set 1 to N - 1 which are co prime to N which is also the order of the 

group  ∗ is called as the Euler totient function, denoted by this () function. And there are 

formulas for calculating the size or the order of the group  ∗ depending upon the value of N. 

 

So, the interesting cases are the following, if N is a prime number then the order of the 

corresponding group phi p star is p - 1 or equivalently they are p - 1 elements in the range 0 to 

p - 1 which are co prime to p. Whereas, the case which we will be using in the context of RSA 

cryptosystem is N is the product of distinct prime numbers p and q. So, if N is the product of 

distinct prime numbers p and q then the size of the group  ∗ is being product of p - 1 and q - 

1. 

 

And this can be proved using the principle of mutual inclusion exclusion that we had discussed

in one of our earlier modules. So, if you want to verify this, consider N = 10 which is the 

product of 2 and 5. And then, we know that there are 4 elements in Z 10 star namely, the order 

of Z 10 star is 4, so, I should get phi of 10 is 4 and indeed, phi of 10 is 4 because it is 2 - 1 

multiplied with 5 - 1. 

 

And we know that, if I take any element a in the group  ∗ then, ()   is 1. And this 

can be proved in multiple ways, I can use the following result from abstract algebra. I know 

that the order of the group  ∗ is ϕ(N) because that is what is the definition of ϕ(N) and element 

1, the numeric element, the numerical 1 is actually the identity element of this group  ∗. 

 

911



And I know that you take any group element, irrespective of what is the order of that group 

element a to the power order of the group, will always give you the identity element. So, p of 

N is the order of the group, a is an element, so, it does not matter what is the order of a, 

irrespective of whatever is the order of a, I know a raised to the power order of the group is 1 

and a raised to the power order is nothing but (). 

 

Based on this theorem, I can say the following. If I want to compute    then, in the 

exponent I can perform modulo ϕ(N) because I can rewrite a power x as several blocks of a 

power ϕ(N) a power ϕ(N) and like that and the last block consisting of a power x modulo ϕ(N). 

Each of these blocks with a power ϕ(N) will give me the identity element 1, 1, 1 and I will be 

left only with the last block which has a power x modulo ϕ(N). 

(Refer Slide Time: 21:24) 

 

So, now let me introduce RSA function which forms the basis of RSA public key cryptosystem. 

This is a function from the set  ∗ → ∗. Then, how exactly is this function defined? So, 

imagine you have a public exponent e, this is not identity element, this is some notation, this is 

an exponent e which is we are going to use in the function. And this exponent e is relatively 

prime to ϕ(N), I stress it is not relatively prime to N, it is relatively prime to ϕ(N). 

 

Now, since e is co prime to ϕ(N), it will have a multiplicative inverse. I call that multiplicative 

inverse as d, so, since e and d are multiplicative inverse of each other, this relationship hold. 

Now, the RSA function in the forward direction is the following. If I want to compute the 

output of the RSA function for x then that is same as computing  . So, remember x is 

a member of  ∗ and hence   will also be an element of  ∗. 
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Because my underlying operation is multiplication modulo N and x power e is like performing 

the group exponentiation. Whereas, my reverse function from  ∗ → ∗ to will be the 

following. If I have a value y and if I want to invert it, I compute   . So, I can prove 

that the function  in the reverse direction is actually the inverse of the function  in the 

forward direction. 

 

And the way we can prove it is as follows. So, you take any arbitrary x and suppose, for that 

arbitrary x, the forward direction function gives you the output y. So, y =  . What I 

have to show is that, now if I invert this y, namely   as per the inverse function, I 

should get back my x. So, let us do that. So, let us try to invert the value of y. 

 

So, let me write down the value of y, y is nothing but   and then whole thing raised to 

the power d then, I can apply the rules of group exponentiation and say that this is nothing but 

  . And remember that () is 1 because x is an element of  ∗. That is what we 

discussed in the previous slide. So,   will give the same answer as if x to the power 

in the exponent, I do   () that means, I can reduce the exponent itself modulo ϕ(N). 

 

But   () is 1 that means, this   () is 1, so, this is nothing but    

and which is strictly x because if x was a member of  ∗ that means, x was strictly less than 

N. So, if x is strictly less than N then, the effect of mod would not take an x modulo N will be 

same as x. So that shows that these functions  and  they are inverse of each other. So, if 

you go to the forward direction through , you can always come back in the reverse direction 

through . 

(Refer Slide Time: 24:57) 
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Now, based on all these things, let us introduce a computational problem which we believe is 

really difficult to solve. It is like your discrete log problem. So, we know that there are certain 

groups where solving discrete log instance is really difficult. In the same way RSA introduced 

a computational problem which we believe to be difficult to solve. Difficult to solve in the 

sense, in the reasonable amount of time, a practical amount of time, we may not be able to 

solve it. 

 

I am not saying it is impossible to solve it, you can always solve it by doing a brute force, but 

the brute force algorithm will take enormously large amount of time. If we operate on very 

large numbers. So, the problem instance is as follows. So, we first define what we call RSA 

parameter generation algorithm. So, this is parameter generation. So, to generate the 

parameters, we randomly pick some n-bit prime numbers p and q. 

 

And then we compute the modulus which is the product of p and q, we compute a value of 

ϕ(N). Since, N is the product of prime numbers p and q which are distinct, by the way, we will 

ensure that p and q are distinct. So, p and q are distinct, the value of () = ( − ) ⋅ ( −

). We will pick an exponent e which is co prime to ϕ(N). And since e is co prime to ϕ(N), we 

will be able to compute its multiplicative inverse modulo ϕ(N) by running extended Euclid’s

algorithm. 

 

And finally, the output of this parameter generation algorithm is the modulus, the prime factors 

of the modulus, the public exponent e and the secret exponent d. What do I mean by public and 

secret it will be clear soon. So, the RSA problem is the following. If I give you the modulus, 
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but not its prime factors and if I give you the public exponent in that sense, it is public, it will 

be known to you and it will be known that how exactly this parameters N and e are generated.

What would not be known to you are the prime factors of N. 

 

And if the prime factors of N are not known, you would not be knowing the value of ϕ(N) and 

the value of ϕ(N) is not known to you, you would not be knowing the value of d. So, d is not 

known, ϕ(N) is not known, p and q are not known. Now, the problem instance is the following. 

I will be giving you a random element from my group  

∗ and your goal will be to compute the inverse function, output of the inverse function that 

we had just seen, for the randomly chosen y. 

 

Namely, your goal will be to compute    where d is not given to you and    

is nothing but computing y raised to power 1 over e where 1 over e is not numeric 1 over e but 

it is actually the multiplicative inverse of d, so, multiplicative inverse of d is nothing but, so, d 

and e, they are multiplicative inverse of each other. So, computing d is nothing but computing 

/ . 

 

So, basically I am asking you to compute the eth root of    and I want you to solve this 

problem instance in polynomial of n number of time where n is the number of bits that I used 

to represent p and q that means, my p and q are n-bit numbers. So, one way of solving this 

problem instance is that you are able to factorize N. So, suppose you are able to factorize N in 

polynomial amount of time namely, you are able to compute p and q in polynomial amount of 

time. 

 

Once you are able to compute p and q you will be able to compute ϕ(N) easily. And since you 

know e and if you know ϕ(N), you yourself can run the extended Euclid’s algorithm and 

compute d in polynomial amount of time and then you yourself can compute . But it turns 

out that factoring very large numbers is believed to be an extremely hard problem, specifically, 

with the current computing power. 

 

If I select my p and q to be as large as say, 512 bit prime numbers then my N will be an 

extremely large modulus then factorizing that extremely large modulus will be very time 
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consuming process and hence you would not be able to solve and random instance of the RSA 

problem. 

(Refer Slide Time: 29:48) 

 

So, now based on whatever theory we have discussed, let us see the concrete steps of the RSA 

public key cryptosystem. So, remember, we have a function in the forward direction from  

∗ → ∗ namely, x power e modulo N and a reverse function is y power d modulo N. And 

we also have discussed RSA problem where if I do not give you the value of the secret exponent 

d then, computing    is very time consuming that is what is the general belief. 

 

Now, the way RSA cryptosystem works is as follows. So, remember, there is a sender and a 

receiver. So, what receiver will do is the following. Receiver will run the parameter generation 

algorithm. Namely, it will pick a random prime number p, a random prime number q, will 

compute its product, will pick an index e which is relatively prime to ϕ(N). So, he can compute 

ϕ(N) because he himself has picked p and q. 

 

And once he has picked e, he knows ϕ(N), he can compute d as well. And then he will set pk 

or the encryption key to be (N, e) and he will set as the decryption key to (N, d). So, d is kept 

with himself, e is made public and N is also made public. If there is a sender, who has a plain 

text m and which it wants to encrypt then, encryption of m is nothing but computing the forward 

direction function as per the RSA function, namely, just output   . 

 

And if there is a receiver who obtains the cipher text c and who has the secret decryption key 

d then to get the cipher text, tend to recover back the message encrypted in c, he has to basically 
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compute the inverse function for the c, inverse function is computable, if d is available and if 

d is available with the receiver, he can easily compute    and get back the message. 

Now, why this is called as a textbook cryptosystem? Because this is not precisely the way we 

use RSA public key cryptosystem in practice. 

 

There are lots of shortcomings. One very important one, a very bad feature of the way RSA 

cryptosystem is proposed is given here and if I use here, the major shortcoming here is that, it 

is deterministic. It is deterministic in the sense that, if there is a sender S and suppose, he wants 

to send the same message m after every one hour. Then, if you encrypt the same message m 

using the public key (N, e), every time he will be producing the same c. So, the first time he 

wants to encrypt a message m, he will send c. 

 

Next time he wants to send a message m using the same key, he will be again sending the c, 

again next time he wants to send the same message m, he will be sending the c, this itself is a 

lot of information for the third party or the attacker. He may not be able to learn the exact value 

of the message m. But he will be coming to know that actually it is the same message m which 

has been encrypted and communicated to the receiver. 

 

And depending upon my underlying application, this itself can be a breach of security. Ideally, 

I am looking for a process where, even if the same message m is encrypted using the same 

public key multiple times, it should produce different cipher texts with high probability. But 

that is not the feature available with the way RSA public key cryptosystem was invented. But 

we can of course get rid of this shortcoming and actual way in which we used RSA public key 

cryptosystem is different from the way it is proposed here. 

 

But this forms the basis of the RSA public key cryptosystem, a very interesting public key 

cryptosystem. So, with that, I conclude today’s lecture. Just to summarize, in this lecture, we 

discussed about public key cryptosystem and we discussed two popular instantiations of public 

key cryptosystem namely, we have discussed ElGamal encryption scheme and we have 

discussed RSA public key cryptosystem. Thank you! 
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