
Chapter 9: Fourier Integrals

Introduction
In practical applications, especially in Civil Engineering, many physical phenom-
ena such as heat conduction, vibrations in structures, and signal transmission are
best described using functions that may not be periodic. While Fourier Series is
a powerful tool for representing periodic functions, it becomes inadequate when
dealing with non-periodic functions. To handle such cases, Fourier Integrals
are introduced.

A Fourier Integral allows us to express a non-periodic function as a continuous
superposition of sines and cosines (or exponential functions), making it indispens-
able in solving engineering problems involving non-periodic boundary conditions
and transient phenomena.

9.1 The Need for Fourier Integrals
Fourier Series represents a function f(x) defined on a finite interval [−L, L] as
an infinite sum of sines and cosines:

f(x) = a0

2 +
∞∑

n=1

(
an cos nπx

L
+ bn sin nπx

L

)
But for non-periodic functions or when the interval becomes infinitely large
(L → ∞), the discrete nature of the Fourier coefficients becomes continuous, and
the sum becomes an integral. This transition leads us to Fourier Integrals.

9.2 Derivation of the Fourier Integral
Let f(x) be a piecewise continuous function on (−∞, ∞) that satisfies the
Dirichlet conditions and is absolutely integrable, i.e.,

∫ ∞

−∞
|f(x)| dx < ∞

We begin with the Fourier series of f(x) defined on [−L, L]:

f(x) =
∞∑

n=1

[
an cos

(nπx

L

)
+ bn sin

(nπx

L

)]
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Let ωn = nπ
L . As L → ∞, ωn → ω becomes a continuous variable. The sum

becomes an integral:

f(x) =
∫ ∞

0
[A(ω) cos(ωx) + B(ω) sin(ωx)] dω

Where,

A(ω) = 1
π

∫ ∞

−∞
f(t) cos(ωt) dt, B(ω) = 1

π

∫ ∞

−∞
f(t) sin(ωt) dt

This is the Fourier Integral Representation of f(x).

9.3 Fourier Integral Formula
Let f(x) be a function such that:

• f(x) is piecewise continuous on (−∞, ∞)
• f(x) is absolutely integrable over (−∞, ∞)

Then,

f(x) =
∫ ∞

0
[A(ω) cos(ωx) + B(ω) sin(ωx)] dω

Where:

A(ω) = 1
π

∫ ∞

−∞
f(t) cos(ωt) dt, B(ω) = 1

π

∫ ∞

−∞
f(t) sin(ωt) dt

Alternatively, combining cosine and sine terms, we can express the function using
the complex Fourier integral:

f(x) = 1
2π

∫ ∞

−∞
f̂(ω)eiωx dω

Where:

f̂(ω) =
∫ ∞

−∞
f(t)e−iωt dt

This is the Fourier Transform of f(x).
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9.4 Fourier Cosine and Sine Integrals
If f(x) is even (i.e., f(−x) = f(x)), then its Fourier integral contains only cosine
terms:

f(x) =
∫ ∞

0
A(ω) cos(ωx) dω

If f(x) is odd (i.e., f(−x) = −f(x)), then its Fourier integral contains only sine
terms:

f(x) =
∫ ∞

0
B(ω) sin(ωx) dω

This simplification is useful in boundary value problems involving symmetric
domains.

9.5 Conditions for Fourier Integrability
For a function f(x) to possess a valid Fourier Integral representation:

1. f(x) must be piecewise continuous in every finite interval of R.
2. f(x) must be absolutely integrable over (−∞, ∞).
3. Discontinuities must be finite and of finite magnitude.

If these conditions are satisfied, then:

lim
ϵ→0

f(x + ϵ) + f(x − ϵ) = 2f(x)

at all points of continuity.

9.6 Applications in Civil Engineering
Fourier Integrals are particularly important in Civil Engineering for solving:

• Heat conduction problems in infinite or semi-infinite rods
• Vibration analysis of continuous beams or plates
• Dynamic analysis of structures subject to non-periodic loading
• Soil mechanics for propagation of stress waves
• Ground motion analysis during earthquakes

For example, temperature distribution in a long concrete beam due to an
instantaneous point source can be solved using the Fourier integral method.
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9.7 Worked Examples
Example 1:

Evaluate the Fourier sine integral representation of the function:

f(x) =
{

1, 0 < x < a
0, x ≥ a

Solution:

Since f(x) is odd over (0, ∞), use the sine integral:

f(x) =
∫ ∞

0
B(ω) sin(ωx) dω

Where:

B(ω) = 1
π

∫ a

0
1 · sin(ωt) dt = 1

π

[
−cos(ωt)

ω

]a

0
= 1

πω
(1 − cos(ωa))

Thus,

f(x) =
∫ ∞

0

1 − cos(ωa)
πω

sin(ωx) dω

Example 2:

Find the Fourier cosine integral of f(x) = e−ax, a > 0, for x > 0.

Solution:

Use:

f(x) =
∫ ∞

0
A(ω) cos(ωx) dω

A(ω) = 2
π

∫ ∞

0
e−at cos(ωt) dt

Use known integral:

∫ ∞

0
e−at cos(ωt) dt = a

a2 + ω2

Hence,
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A(ω) = 2
π

· a

a2 + ω2

Therefore,

f(x) =
∫ ∞

0

2a

π(a2 + ω2) cos(ωx) dω

This verifies the cosine integral representation of f(x) = e−ax.

9.8 Dirichlet’s Integral
A useful result in Fourier Integrals is:

∫ ∞

0

sin ωx

ω
dω =


π
2 , x > 0
0, x = 0

− π
2 , x < 0

This integral frequently appears in solving boundary value problems using Fourier
methods.

9.9 Complex Form of Fourier Integral
So far, we have discussed the Fourier integral in terms of sine and cosine functions.
However, it is often more convenient and elegant to express it using complex
exponentials.

Let f(x) be an absolutely integrable function over (−∞, ∞). Then the complex
Fourier integral representation of f(x) is:

f(x) = 1
2π

∫ ∞

−∞
f̂(ω)eiωx dω

Where the Fourier transform f̂(ω) is defined as:

f̂(ω) =
∫ ∞

−∞
f(t)e−iωt dt

The inverse Fourier transform is:

f(x) = 1
2π

∫ ∞

−∞
f̂(ω)eiωx dω

5



Advantages of the Complex Form:

• Unified treatment of both sine and cosine terms.
• Simplifies differential equation solutions in engineering.
• Well-suited for using Laplace and Fourier techniques together.

9.10 Properties of the Fourier Transform
Understanding the properties of the Fourier Transform helps in efficiently solving
various problems. Let f(x) ↔ f̂(ω) denote the Fourier transform pair.

1. Linearity:

F [af(x) + bg(x)] = af̂(ω) + bĝ(ω)

2. Translation (Shift):

• In time domain:

F [f(x − a)] = e−iωaf̂(ω)

• In frequency domain:

F [eiaxf(x)] = f̂(ω − a)

3. Scaling:

F [f(ax)] = 1
|a|

f̂
(ω

a

)
4. Differentiation:

If f(x) is differentiable,

F
[

dnf(x)
dxn

]
= (iω)nf̂(ω)

This is particularly useful for solving PDEs.

9.11 Fourier Integral in Engineering Problem Solving
Let’s look at how the Fourier Integral is applied in a real engineering scenario.
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Problem: Heat Diffusion in a Semi-Infinite Rod

A rod of infinite length initially at zero temperature receives an instantaneous unit
heat source at x = 0 at t = 0. The governing equation is the one-dimensional
heat equation:

∂u

∂t
= α2 ∂2u

∂x2

With initial condition:

u(x, 0) = δ(x)

And boundary condition:

u(±∞, t) = 0

Taking the Fourier Transform in x, we convert the PDE to an ODE:

∂û(ω, t)
∂t

= −α2ω2û(ω, t)

Solving:

û(ω, t) = e−α2ω2t

Taking the inverse Fourier transform:

u(x, t) = 1
2π

∫ ∞

−∞
e−α2ω2teiωx dω

Using the standard Gaussian integral identity:

u(x, t) = 1√
4πα2t

e− x2
4α2t

This is the heat kernel, a fundamental solution showing how heat diffuses
through the rod — a crucial result for civil engineers analyzing thermal effects
in structures.
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9.12 Parseval’s Theorem for Fourier Integrals
Parseval's identity relates the energy of a signal in time domain to that in
frequency domain.

Let f(x) and g(x) be absolutely integrable functions. Then:

∫ ∞

−∞
f(x)g(x) dx = 1

2π

∫ ∞

−∞
f̂(ω)ĝ(ω) dω

When f = g, it becomes:

∫ ∞

−∞
|f(x)|2 dx = 1

2π

∫ ∞

−∞
|f̂(ω)|2 dω

This has practical importance in energy calculations, error estimation, and
signal processing in structural monitoring systems.

9.13 Comparison: Fourier Series vs Fourier Integral

Feature Fourier Series Fourier Integral
Applicable to Periodic functions Non-periodic functions
Domain Finite interval Infinite interval
Representation Discrete sum of

sines/cosines
Continuous integral

Coefficients an, bn A(ω), B(ω) or f̂(ω)
Use in Engineering Vibrations of bounded

structures
Heat transfer, infinite
domain analysis

9.14 Common Integral Forms for Reference
To aid problem-solving, here are standard Fourier integral forms:

1. Fourier Sine Transform of f(x) = 1, 0 < x < a:

∫ a

0
sin(ωx) dx = 1 − cos(ωa)

ω

2. Fourier Cosine Transform of e−ax:

∫ ∞

0
e−ax cos(ωx) dx = a

a2 + ω2
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3. Fourier Sine Transform of e−ax:

∫ ∞

0
e−ax sin(ωx) dx = ω

a2 + ω2

9.15 Exercises
1. Derive the Fourier cosine integral of f(x) = xe−x for x > 0.

2. Evaluate the Fourier sine integral of the step function:

f(x) =
{

1, 0 < x < L
0, x > L

3. Use the complex Fourier integral to represent f(x) = 1
1+x2 .

4. Apply Fourier integral methods to solve the initial value problem for the
one-dimensional wave equation.

5. Show that the function f(x) = e−a|x| has a Fourier transform and compute
it.
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