LECTURE 7

Formation of Clay Minerals:

A soil particle may be a mineral or a rock fragment. A mineral is a chemical compound formed in nature during a geological process, whereas a rock fragment has a combination of one or more minerals. Based on the nature of atoms, minerals are classified as silicates, aluminates, oxides, carbonates and phosphates.

Out of these, silicate minerals are the most important as they influence the properties of clay soils. Different arrangements of atoms in the silicate minerals give rise to different silicate structures.

Basic Structural Units

Soil minerals are formed from two basic structural units: tetrahedral and octahedral. Considering the valencies of the atoms forming the units, it is clear that the units are not electrically neutral and as such do not exist as single units.

The basic units combine to form sheets in which the oxygen or hydroxyl ions are shared among adjacent units. Three types of sheets are thus formed, namely *silica sheet*, *gibbsite sheet* and *brucite sheet*.

Isomorphous substitution is the replacement of the central atom of the tetrahedral or octahedral unit by another atom during the formation of the sheets.

The sheets then combine to form various two-layer or three-layer sheet minerals. As the basic units of clay minerals are sheet-like structures, the particle formed from stacking of the basic units is also plate-like. As a result, the surface area per unit mass becomes very large.

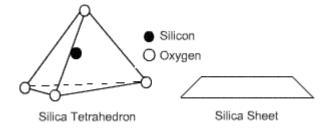
Formation of Clay Minerals:

A soil particle may be a mineral or a rock fragment. A mineral is a chemical compound formed in nature during a geological process, whereas a rock fragment has a combination of one or more minerals. Based on the nature of atoms, minerals are classified as silicates, aluminates, oxides, carbonates and phosphates.

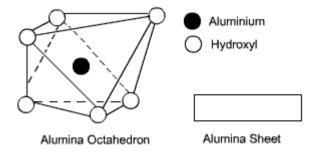
Out of these, silicate minerals are the most important as they influence the properties of clay soils. Different arrangements of atoms in the silicate minerals give rise to different silicate structures.

Basic Structural Units

Soil minerals are formed from two basic structural units: tetrahedral and octahedral. Considering the valencies of the atoms forming the units, it is clear that the units are not electrically neutral and as such do not exist as single units.


The basic units combine to form sheets in which the oxygen or hydroxyl ions are shared among adjacent units. Three types of sheets are thus formed, namely *silica sheet*, *gibbsite sheet* and *brucite sheet*.

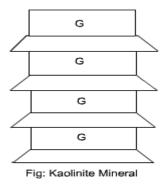
Isomorphous substitution is the replacement of the central atom of the tetrahedral or octahedral unit by another atom during the formation of the sheets.


The sheets then combine to form various two-layer or three-layer sheet minerals. As the basic units of clay minerals are sheet-like structures, the particle formed from stacking of the basic units is also plate-like. As a result, the surface area per unit mass becomes very large.

Structure of Clay Minerals:

A tetrahedral unit consists of a central silicon atom that is surrounded by four oxygen atoms located at the corners of a tetrahedron. A combination of tetrahedrons forms a *silica sheet*.

An octahedral unit consists of a central ion, either aluminium or magnesium, that is surrounded by six hydroxyl ions located at the corners of an octahedron. A combination of aluminium-hydroxyl octahedrons forms a *gibbsite sheet*, whereas a combination of magnesium-hydroxyl octahedrons forms a *brucite sheet*.



Two-layer Sheet Minerals:

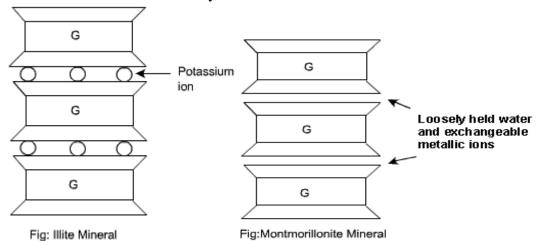
Kaolinite and halloysite clay minerals are the most common.

Kaolinite Mineral

The basic kaolinite unit is a two-layer unit that is formed by stacking a gibbsite sheet on a silica sheet. These basic units are then stacked one on top of the other to form a lattice of the mineral. The units are held together by hydrogen bonds. The strong bonding does not permit water to enter the lattice. Thus, kaolinite minerals are stable and do not expand under saturation. Kaolinite is the most abundant constituent of residual clay deposits.

Halloysite Mineral:

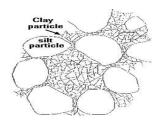
The basic unit is also a two-layer sheet similar to that of kaolinite except for the presence of water between the sheets.


Montmorillonite and illite clay minerals are the most common. A basic three-layer sheet unit is formed by keeping one silica sheet each on the top and at the bottom of a gibbsite sheet. These units are stacked to form a lattice as shown.

Montmorillonite Mineral:

The bonding between the three-layer units is by van der Waals forces. This bonding is very weak and water can enter easily. Thus, this mineral can imbibe a large quantity of water causing swelling. During dry weather, there will be shrinkage.

Illite Mineral:


Illite consists of the basic montmorillonite units but are bonded by **secondary valence forces** and **potassium ions**, as shown. There is about 20% replacement of aluminium with silicon in the gibbsite sheet due to *isomorphous substitution*. This mineral is very stable and does not swell or shrink.

Fine Soil Fabric:

Natural soils are rarely the same from one point in the ground to another. The content and nature of grains varies, but more importantly, so does the arrangement of these. The arrangement and organisation of particles and other features within a soil mass is termed its **fabric.**

CLAY particles are **flaky**. Their thickness is very small relative to their length & breadth, in some cases as thin as 1/100th of the length. They therefore have high specific surface values. These surfaces carry negative electrical charge, which attracts positive ions present in the pore water. Thus a lot of water may be held as adsorbed water within a clay mass.

