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So, now let us analyze Dijkstra’s algorithm for the single source shortest path problem. 

(Refer Slide Time: 00:06) 

So, recall that Dijkstra's algorithms operate by burning vertices in the analogy we used. 

So, we keep track of vertices which have burnt or ((Refer Time: 00:17)) initially nothing 

is visited and initially we do not know any distance to any vertex. So, we have assumes 

all distances that at infinity. When we start at the source vertex, let us call it 1 by 

assumption. So, we set its distance to 0. Then, we repeatedly pickup the first vertex 

which is not burnt and which has the minimum distance among those which are not 

burnt, visited and recomputed the distance to all its neighbors. 
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(Refer Slide Time: 00:45) 

 

So, before we look at the complexity of these algorithms, we actually first have to verify 

that it is correct. So, Dijkstra's algorithms now make these sequences of updates. It is a 

bit analysis to bfs and dfs, because it keep visit in vertices and it visits every vertex only 

once. Now, its visits vertices in a particular order which is different from breadth first or 

the depth first, and we need to justify that this order is actually correct. So, in some sense 

at every point, breadth first search looks all its neighbors and visits them say in the order 

of their vertex number. Depth first search will pick the first neighbor, and then explore it 

further. 

Now, Dijkstra algorithm uses the different strategy which is to pick the first, the smallest 

distance and visited neighbor. So, we have to justify that this choice which is never 

under, that is which keep going forward, and you never go back and say hope maybe I 

should have chose a different one that this kind of strategy actually is correct. So, this is 

a general class of algorithms called greedy algorithms where you have a number of 

possible trajectories of parts that you can choose to solve the problem. At each stage you 

make the next choice based on some local information. At this point, this looks like the 

best choice to make, and then somehow magically this best choice that you make on 

local information turns out to be globally the best trajectory to take. So, for such greedy 

algorithm, it is important to establish that this local choice of the next step actually gives 
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us a global optimum, because very often this kind of a local juristic does not give us a 

correct value. 

(Refer Slide Time: 02:20) 

 

So, let us first look at the correctness of Dijkstra algorithm. So, the key to establishing 

correctness in this particular case is which establishes what is called an invariant, right. 

So, now, the Dijkstra algorithm proceeds as you saw in a sequence of iteration. They are 

n iteration. The invariant is that at each iteration we have this correctness of vertices as 

burnt and unburnt. What you want to claim is that the burnt vertices are correctly solved, 

that is at any point if we look at the distances assigned to the vertices that the burnt set, 

then those distances are actually the shortest distance in the source vertices to that burnt 

vertex. So, if we assume that this inductive invariant is true, now it is certainly true at the 

beginning because at the beginning, the only vertex that we have burnt is the start vertex 

s, right. So, the first vertex we burnt is s and we said it is distance to 0. So, certainly at 

that point this property is true that among the burnt vertices, the distances or in fact the 

shortest distances. 

Now, assuming that we have extended it say for a few vertices, now we want to add a 

new one. So, what we said is that we will pick a vertex v, such that if we look at the 

distance to x plus the weight of x v, if you look at this total sum which will be updated 
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distance to v, this is smallest among all the vertices which are not burnt. So, the claim is 

that if we now add this to our burnt set, right so we extended are burnt set like this by 

include v, then, the distance of v cannot be actually smaller than what we have computed 

now and we could not change it at later update. So, how did you change it because at the 

later update, it could be that some later point we actually extend a burnt set and included 

a new one. Now, can it be that there was a path from y to w to v which is shorter than a 

path we claimed just now via a x to v. So, it is easy to see that the distance to y plus the 

cost of wxy. Now, this must be bigger than or equal to the earlier thing because we 

choose v and not w because at this point w was not a smallest one, v was. Perhaps they 

were equal, but certainly w was not less than v. 

So, at a later stage if you go to w, we know that we will take at least that much time to 

reach w. Then, we have to additionally incur a cost of going from w to v. So, there is no 

way that a later path if we can discover that y to w to v can be better than the correct path 

next, right. So, this reestablishing the invariant that the vertex we burnt next is correctly 

solved. So, this is a way to show that Dijkstra greedy strategy actually solves this 

problem correctly. 

(Refer Slide Time: 05:01) 

 

So, now having established that it is correct, let us look at the complexity. So, there are 
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some obvious loops in this. So, there is a first, then there is an order n loop of initializing 

the visited values to false and instances to infinity. Now, there is another order n loop 

here and inside this order n loop, there are two loops. One is more obvious than the other. 

So, here once we have visited about x and new vertex, then we have to go through all its 

outgoing neighbors, right. There is a scanf all edges which are going out of q. So, that is 

one loop, but also there is a loop here which is kind of implicit which is before we visit a 

vertex, we have to choose it, right. So, we have to go through all the unvisited vertices 

and pick the one whose distance is minimum. So, this in general we have seen that if we 

have a list or an array which is not in any particular order, we have to find the minimum 

and scan the entire array. So, this is implicitly an order n square. So, this is an order n 

step and that time it takes here, it depends on how we represent the edge. 

(Refer Time Slide: 06:10) 

 

So, the outer loop run time we saw. In each iteration, we burnt a vertex. This requires an 

order n scan to find the minimum vertex to burn. After we burnt the vertex, we have to 

scan its neighbors to update the burnt times of those vertices. Now, if we have an 

adjacency matrix as we have seen, then you are going to burn u now, then we have find 

its new neighbor now. We have to scan the row for u in the adjacency matrix. So, this 

will take order n time, right. So, we are in outer order n and inside we have two order n 

things independent of each other. One is to find the minimum burnt vertex, unburnt 
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vertex to burn next, and the second is to update all its neighbors, right. So, because we 

have this order n thing inside a order n loop, overall its order n square. So, now one of 

the bottom x certainly is this adjacency matrix, right. 

(Refer Slide Time: 07:00) 

 

So, we have seen in bfs and dfs that if we move from an adjacency matrix, when 

adjacency list scanning out the vertices of the particular all the neighbors of the 

particular vertex becomes more efficient. So, we can do the same thing here, right. So, if 

we move from adjacency matrix, from adjacency list representation, certainly the second 

order n loop within each iterations can be now counted as an overall order n cost because 

across all the iterations, we would explore every edge only once because we explore 

when we burn its source vertex, right. So, therefore, the second contribution of order n 

gets solved by using an adjacency list, but unfortunately we still have the first order n 

step which is to find the minimum. So, we have a list of burnt time associated with the 

unburn unvisited vertices, and we have to find the minimum among them and this 

remains the order n step. So, overall though we have moved to an adjacency list, this 

alone does not help us because we still have an order n step inside the big loop. So, we 

are still at order n square. 
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(Refer Time Slide: 08:05) 

 

So, activate to get around this bottle neck, we need to maintain the burnt times in a most 

sophisticated data structure. So, it turns out as we need data structure in which we can of 

course find and remove the minimum element quickly, but once we have that, we also 

need to be able to update the values quickly, so that overall both updating and extracting 

are roughly equally the same. So, this can be done using tree like structure in particular 

we will see in a later lecture that there is a nice data structure called heap which precisely 

allows us to do these two operations in log n time. So, if you have n values, then log n 

time you can find and read the minimum value and we can insert a new value or update a 

value which is already in a heap. All these operations take only log n time. 
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(Refer Slide Time: 08:58) 

 

So, if this which we will see later and if this can be done, then what it says is that finding 

the minimum burn time takes log n time. Now, when we update the vertices which are 

adjacent to the current burn vertex, overall we do this O m times, right, because of O m 

edges, but each updates again takes O log n. So, we have now two contributions to our 

complexity. So, this comes from choosing the minimum vertex, right. In order to extract 

the minimum vertex, we do this n times and each time it process log n time, and then in 

order to update the distances once we burnt a vertex, each time it takes the log n time, 

but we do this for each edge. So, it is n log n. So, we have n log n for choosing a vertex 

and this is for updating a distance, right. So, overall are the algorithm becomes n plus m 

log n. So, remember that in a graph n plus m is really a fact is the size of the graph. So, 

this is really a n log n algorithm as a post to the (( )) O n square, and we are seeing 

sorting and other such problems. That is a huge practical jump going from O n square to 

n log n. It is a huge jump in term of the size of the problem we can hope to solve. 
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(Refer Slide Time: 10:13) 

 

So, Dijkstra algorithm makes a very crucial assumption which under lies the correctness 

of its greedy step, and that is that there is no negative cost associated to the nature, right. 

Our argument was that if we choose v as the next neighbor to add to our burn set, then 

we can never find the shorter path coming this way, but obviously we have negative 

edges, then we could have a situation where had say a path of length to here, right and 

then I chose not to follow another path because may be it is have of length 4, but if I 

have come back from there, right may be this has length minus 3. So, if I come around 

this way, then I incur net cost of plus 1 whereas if I go this way, I get plus 2, right. So, 

therefore, by locally looking for a nearest neighbor, I do not necessarily find the shortest 

distance. 
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(Refer Slide Time: 11:15) 

 

So, now of course you might want to ask why you want to put a negative ways in a graph 

at all. Well, remember that the graphs are very general model. There are many situations 

where you can actually interpret negative ways in a sensible way. So, supposing we are 

looking at say at a taxi driver and we are looking at the graph as a list of places, where 

we picks up and drop off people. Now, obviously there are segments where that the 

passenger is in the car and there are segments where we may not have to be may not 

have a passenger, he may have been returning to a place to pick up. For instance, a taxi 

driver operation there from the airport might typically go back to the airport after a free 

trip because he expects to find longer trips from there can within the city, right. So, there 

are segments where he travels empty, there are segments where he has passengers. So, 

some segments earn money, some segments use money. So, there are some positive 

edges and there are some negative edges, and the other situation is completely unrelated 

to anything we have seen so far. 

You can think of say chemicals, chemical compounds and we can represent the graph 

saying how we transform one compound to other compound, and here for instance age 

weight can represent the energy which is either released or absorbed in this process. So, 

again it could be positive or negative, right. So, there are many situations in which edge, 

negative edge which actually makes sense. So, what do we do here negative edge 
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weights? 

(Refer Slide Time: 12:32) 

 

So, first thing to notice that if you have a negative cycle, so if I have a graph which I 

have say a loop like this and all of the things add minus 3, minus 2 and plus 1, then if I 

go around the cycle once, right and come back, then I will incur a total cost of minus 4. 

So, this means that if I had a path which started somewhere else, came here and left the 

cycle somewhere else. Suppose we had a source and a target, then I can make the 

distance in a source to the target arbitrarily small by going round and round this loop 

many number of times, right. At each time I go round the loop, the cost reduces by minus 

4. So, I keep adding minus 4 to my cost. So, the cost will be as low as I want just 

depending on how many times I go around you. 

So, if I have negative cycles in a graph, the question of the shortest path does not even 

make a sense. There is no notion of a shortest path, because the quantity is not well 

defined, but it turns out that if I rule out this cycle, it could have negative edges, but not 

negative cycle. So, for instance here if instead of plus 1, I said that this was plus 7, right. 

If I have made this way plus 7 and going around the cycle will cause me plus 2. So, 

therefore, it does not help me to go around the cycle because it only adds to my cost. 

Therefore, in a situation where I have no negative cycle, but I do have negative edges, it 
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still makes sense to talk of shortest path, and we will see later that there are other 

algorithms, other than Dijkstra’s algorithm which can handle these. In particular we will 

look at Bellman-Ford algorithm, and we will also see that all pair shortest path problems 

which generalize the single source short path problem called the Floyd Marshall 

algorithm. We will also solve these things regardless of whether the paths are negative or 

the weights are negative or not, provided there are no negative cycles. 
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