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2. Texture  
It is the arrangement and frequency of tonal variation in an image (Figure 5.38). Texture is 
created by an aggregation of unit feature that may be too small to be discerned individually on 
the image, such as tree leaves. It determines the overall smoothness or coarseness of image 
features as visualised on the image. If the scale of the image is reduced, texture of any given 
object or area becomes progressively finer and ultimately disappears. Texture is combination 
of shape, size, pattern, shadow and tone.  
 
Various features with similar reflectances can be distinguished based on their texture 
differences, such as the smooth texture of green grass as contrast with the rough texture of 
crowns of green trees.  Smooth textures would have very little tonal variation, e.g., fields, 
asphalt, or grasslands, whereas the grey levels change abruptly in a small area, e.g., forest 
canopy, where rough texture is present. Sand has rough texture as compared to clay. Texture is 
also one of the most important elements for distinguishing features from Radar images. 
 
3. Pattern  
It relates to the spatial arrangement of visibly discernible objects (Figure 5.38). Typically, a 
repetition of similar tones and textures in a particular fashion will produce a distinct pattern 
which makes them distinct from each other. Many natural and man-made objects exhibit 
peculiar pattern, such as triangular, rectangular, square, pentagon, hexagon, circular or any 
other shape.  Gardens with evenly spaced trees, and urban streets with regularly spaced houses 
are examples of pattern.  
 

Table 5.7  Elements of image interpretation (Richards and Jia, 2013) 

 
 
4. Shape  
Shape can be a very distinctive clue for interpretation of various objects. It refers to the general 
form, configuration, or outline of individual objects (Figure 5.38). Shapes of some objects can 
be easily identified from stereo-photographs.  Some objects are so distinctive that their images 
may be identified solely from their shapes. Shadow characteristics is also helpful to reveal the 
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shape of the object. Straight edge shapes typically represent agricultural fields, while natural 
features, such as forest boundary, lakes, are generally more irregular in shape.  
 
5. Size  
Size of objects in an image is a function of scale of image. It is important to map the size of an 
object relative to other objects as well as its absolute size (Figure 5.38). The size of a feature 
will change on different scale images. A building may look like a point feature on a small scale 
image. For example, zones of land use, large buildings such as factories or warehouses would 
indicate commercial property, whereas small buildings would indicate residential use.  
 

 
Figure 5.38  Pictorial representation of various visual interpretation elements (Garg, 2019) 

 
6. Shadow  
Shadow is helpful in interpretation of objects from images in two respects.  Firstly, the shape 
or outline of a shadow normally provides the height of objects, and secondly the objects on the 
ground can be identified with respect to their shape of the shadow. However, the areas under 
shadow would hide the information and create difficulty in interpretation. For example, the 
shadows casted by various cultural features (bridges, silos, towers, etc.) can aid in their 
identification on air-photos/images. The shadows resulting from variations in terrain elevations 
can aid in assessing the natural topographic variations or geological landforms, particularly in 
Radar imagery. 
 
7. Site/Association 
Site refers to the topographic or geographic location of objects. It is an important clue in the 
identification of certain types of features (Figure 5.38). For example, certain tree species would 
occur on well-drained upland sites, whereas other tree species would occur on poorly drained 
lowland sites.  
 
Association refers to the presence of certain features in relation to others. It takes into account 
the relationship between the recognizable objects/features in proximity to the object to be 
identified. For example, the snow cover is related to higher elevation zones, commercial 
properties are associated with major transportation routes. 
 
5.17 Digital Image Interpretation Methods 
This section deals with the interpretation of optical digital remote sensing images. Digital 
remote sensing images consist of pixels, and have a square grid structure, where one grid 
represents a pixel (i.e., the smallest element in a digital image). Each pixel is associated with a 
DN in a particular wavelength.  Identification and separation of objects/features with respect 
to their DN values is called digital image processing.  Pixels with similar DN values are 
grouped into various classes. In digital image processing requires a digital image and a software 
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along with the skilled manpower for the interpretation, analysis and mapping. A comparison 
between visual and digital methods of interpretation is given in Table 5.8. 
 

Table 5.8    Comparison of visual interpretation and digital interpretation methods (Garg, 2022) 
S.No. Manual Interpretation Digital Interpretation 
1 Hard copy data are required Digital data are required 
2 Requires simple and economical equipment or 

no equipment 
Requires specialized, and often expensive 
equipment and software 

3 Limited to analyse a single image at a time Simultaneous interpretations of multispectral 
images 

4 It involves subjectivity. i.e., the results may 
vary to some extent with different interpreters 

It is an objective process which is based on the  
spectral signature of objects, and the images are 
analysed through a computer, so results are almost 
consistent 

5 It is a  qualitative method It is a quantitative method 
6 Cost-effective for small areas and for one-time 

interpretation 
Cost-effective for large geographic areas, and for 
repetitive analysis.  

7 No algorithm is used Complex interpretation algorithms are required 
8 Time-consuming and laborious Speed may be an advantage 
9 Difficult to change the scale of mapping Easy to change the scale of mapping 
10 Output product is in hard copy format so not 

compatible with other data 
Compatible with other digital data 

 
The digital images give us the flexibility to pre-process the digital pixel values in an image. 
The entire digital image processing consists of four basic operations: image pre-processing, 
image enhancement, image transformation, and image classification (Eastman, 1999). The 
details of these processes can be found in Garg (2022). 
 
5.17.1 Image pre-processing 
It involves the initial processing of raw image data to apply corrections for geometric 
distortions, calibrate the data radiometrically, and remove the noise present in the data, if any.  
 
(A) Geometric Corrections: 
It has two basic steps, as explained below- 
 
(i) Georeferencing 

Raw remote sensing data is without any geographic coordinates, and has distortions, mainly 
caused by the sensor geometry. Therefore, these can’t be used as such for any quantitative 
measurements on them. Georeferencing is the conversion of image coordinates to ground 
coordinates by removing the distortions caused by the sensor geometry. Georeferencing is 
important to deal with various images, create mosaicking and compare various scenes (e.g., 
change assessment). It is a process of locating an entity/object in real world coordinates, also 
called geo-rectification or geo-registration.  
 
The direction of satellite motion in the orbit and on-board sensors while taking images is not 
exactly north-south or west-east, respectively. In addition, there is a rotation of the Earth about 
its own axis while taking the images, so images are not perfect square but they have somewhat 
skewed shape. Georeferencing re-orients the image to a coordinate system representing the 
Earth, and making its geometry same as the Earth. Georeferenced images can be viewed, 
compared, and analysed with other geographic data.  
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To do georeferencing, the exact locations of several known points, called Ground Control 
Points (GCPs), are required. These GCPs are normally selected as prominent objects whose 
geographical locations can be accurately determined either from the topographic maps or GPS 
survey. A minimum of four control points are required for georeferencing, however, additional 
control points would help increasing the accuracy of georeferencing. These GCPs are also 
identified on the image to be georeferenced. With these two sets of coordinates, polynomial is 
fitted amongst the GCPs, and rms error is minimized to ±1 pixel size. After georeferencing, 
each point on the image has real-world coordinates associated. The accuracy of the 
georeferencing would depend on the number, accuracy, and distribution of the control points 
and the choice of transformation polynomial. Normally, 2nd or 3rd order polynomial is used. 
 
(ii) Resampling 
After the georeferencing process, we may find that the pixels have been oriented differently 
than the way they were present in the original image coordinate system. Resampling is the 
process of interpolation the new DN values of the displaced pixels (new pixel location) in the 
new coordinate system. Three methods of resampling are commonly used, as given below 
(Figure 5.39). 
 
(a) Nearest Neighbour: In this method, the attribute value of the original pixel nearest to a 
pixel in the output image is assigned to the corresponding cell. 
 
(b) Bilinear Interpolation: It assigns the value to a pixel in the output image by taking 
weighted average of the surrounding four pixels in the original grid nearest to it. 
 
(c) Cubic Convolution: It assigns the value to a pixel in the output image by taking weighted 
average of the surrounding sixteen pixels in the original grid nearest to it. 
 
Among the three methods, nearest neighbour is a preferred method as it doesn’t alter the values 
of the original grid cells assigned to the resampled grid cells but it produces a blocky image. 
The cubic convolution on the other side does change the values but is more accurate. It 
generates a smoother image. 

 
Figure 5.39  Resampling methods (Nady, 2020)  

 
(B) Atmospheric Correction 
Atmospheric correction is done to modify the DN values to remove noise, i.e., contributions to 
the DN due to intervening atmosphere.  Lower wavelengths of visible spectrum are more 
subject to haze, which falsely increases the DN values. The simplest approach for its correction 
is known as dark object subtraction method, which assumes that if there was no haze present 
then the dark pixel will have zero DN value, e.g., deep water in near infrared will have complete 
absorption, and therefore those pixels will have zero DN values. But in reality, we won’t find 
any dark pixel with zero values. For such image, the lowest DN value present in the image is 



327 
 

determined, and is subtracted from all the DN values of the image, so that the dark (water) 
pixels are now zero.  
 
5.17.2  Image enhancement  
Image enhancement is mainly carried out to improve the quality of images. Often, the images 
do not have the optimum contrast so objects are not clearly identified visually. Enhancement 
is made to make the visual appearance of image better. It is the modification of images to 
improve the interpretability through human vision. The main purpose of image enhancement 
is to increase the contrast in a low contrast image. It does not add any information to the original 
image but it enhances the visual appearances of already captured features. Enhancement of an 
image can be implemented by using various methods.  They improve the image quality so that 
the enhanced image is better than the original image for a specific application. Before image 
enhancement is done it is necessary to understand the image characteristics through its 
histogram. 
 
(A) Image Histogram  
A histogram is a graphical representation of the DN values (i.e., 0-255) in an image that are 
displayed along x-axis, while the frequency of occurrence of these values is plotted on y-axis. 
Image histogram is a way to portray the information present on an image. In raw imagery, the 
useful data often occupies only a small portion of the available range of DN values (256 levels 
in an 8 bit image). In an 8-bit image, in a histogram, the x-axis will contain 256 DN values and 
the y-axis will display how many of each intensity value is present.  
 
A digital image can be represented by three effective ways (Figure 5.40): (i) Pictorially, in the 
form of image (ii) Numerically, in the form of DN values arranged in the matrix, and (iii) 
Graphically, through its histogram. A single peak bell-shaped histogram is considered as the 
best shape of a histogram of image data. It conveys about the homogeneity and well distribution 
of grey levels in the image. Two peaks (bi-model) histogram indicates that there could be two 
pre-dominant classes (e.g., water and vegetation) present on the image.  
 

 
Figure 5.40 Representation of an image (pictorially, numerically and graphically) (Garg, 2019) 

 
In reality, the shape of the histogram of an image is quite different that the ideal shape of 
histogram, as shown in Figure 5.41.  The DN values are normally skewed either towards the 
lower values or towards the higher values, therefore, they indicate the presence or absence of 
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features with higher or lower reflectances. Histograms alone can provide a lot of information 
about images to an interpreter even without looking at the images, such as likelihood of 
presence or absence of type of features, distribution etc. These help evaluate images 
statistically, e.g., normal, skewed, bimodal distribution, etc. The histograms are then used in 
individual image enhancement, image segmentation and image classification. Histograms also 
help matching of images across time or space.  
 

 
Figure 5.41 Various shapes of histogram of an image (Jenson, 1986) 

 
Various enhancement techniques interpolate the range of DN values in an image, which can be 
represented graphically by its histogram. 
 
(B) Contrast Enhancement  
The contrast is defined as the maximum difference in color or intensity between two objects in 
an image. If the contrast is poor (low), it is impossible to distinguish between various objects 
and they are perceived as the same object. Contrast enhancement involves changing the original 
DN values so that more available range is utilised, thereby increasing the contrast between the 
objects and their background. It basically improves the interpretability for human viewing, and 
provides enhanced input to be used for image processing.  
 
There are many different techniques and methods of enhancing the contrast, and details can be 
found in Garg (2022). The linear contrast enhancement is the most popular technique used for 
image enhancement. It involves identifying the minimum and maximum DN values in the 
image, and applying a linear transformation to stretch the present range to occupy the full range 
(e.g., 0-255 in an 8-bit image). In Figure 5.42, for example, minimum DN value (occupied by 
actual data) in the histogram is 84 and the maximum DN value is 153, so these 70 grey levels 
(153- 84 =70) occupy less than one-third of the full 256 levels available. A linear stretch will 
uniformly expand this small range to cover almost the full range of values from 0 to 255. It 
would enhance the contrast in the image with light toned areas appearing lighter and dark areas 
appearing darker, and thus making the identification of objects/features much accurate and 
effective.  
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Figure 5.42 Original histogram and after linear contrast enhancement (Garg, 2022) 

 
The linear contrast enhancement is mathematically represented as- 
 
DNout  =   ((DNin-DNmin)/(DNmax - DNmin))* No. of grey levels                                        (5.8) 
  
where,  
DNout represents the output values in the image 
DNin represents the DN value at that pixel location from input image. 
DNmin and DNmax are the minimum and maximum DN value, respectively, in the input image.  
No. of grey levels are the total number of intensity values that can be assigned to a pixel. For 
example, in 8 bit images, the maximum number of grey levels is 255.  
 
Figure 5.43 shows the results of linear contrast enhancement on Landsat ETM+ images. The 
main purpose of image enhancement is to increase the contrast in a low contrast image. It does 
not add any information to the original image but it enhances the visual appearances of already 
captured features.  
 

 
Figure 5.43 (Left) original satellite image, and (Right) after linear contrast enhancement 
(https://www.gisoutlook.com/2019/08/digital-image-processing-image.html) 
 
(C) Image Transformations 
The image transformation is the creation of new image by using some mathematical function 
on the original images. The image transformation will normally yield synthetic images which 
are very useful for specific applications, as they enhance certain features of interest. Some 
examples of transformations include; simple arithmetic operations, Vegetation Indices (VI), 
Normalised Difference Vegetation Index (NDVI), Principal Component Analysis (PCA) and 
Tasselled Cap Transformations (TCT).  The VI and NDVI images have been frequently used 
world-wide for the study of forest cover, vegetation and crop classifications. The details are 
given in Garg (2022). 
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The VI is obtained as the ratio of the near-infrared (NIR) band to the Red band- 
 

VI = NIR band / Red band        (5.9) 
 
If both the Red and NIR bands (or the VIS and NIR) have similar reflectance, the value of ratio 
is 1 or close to 1. Ratio values for bare soils generally are near 1; as the amount of green 
vegetation increases, the ratio increases. The value of ratio can increase far beyond 1 up to 30. 
 
Most popular and commonly used vegetation index is the NDVI. The NDVI is a measure of 
the vegetative cover on the land surface, but it is also used to identify the water and soil. 
Vegetation differs from other land features because it tends to absorb strongly red wavelengths 
of sunlight and reflect in the near-infrared wavelengths. It is a measure of the difference in 
reflectance between these wavelength ranges. The NDVI is computed as-  
 

NDVI = (NIR - Red) / (NIR + Red)       (5.10) 
 
The NDVI values range between -1 and 1; value 0.5 indicates dense vegetation and values < 0 
indicate no vegetation. Since vegetation has high NIR reflectance but low red reflectance, 
vegetated areas will have higher values as compared to non-vegetated areas. The NDVI has 
been used world-wide to monitor vegetation condition, vegetation health, cover and phenology 
over large areas, and therefore can provide early warning on droughts and famines.  

 
5.17.3  Digital image classification 
The digital classification of optical images and microwave images required different 
approaches, and software. In this section, optical image classification and associated algorithms 
have been discussed. Digital image classification is a software-based classification technique 
used for information extraction from optical images based on their DN values. It requires 
identification of spectral signature of various objects in an image, and subsequently tagging the 
pixels with similar spectral signatures. Each pixel (or groups of pixels) of an image may be 
assigned to a land use or land cover class. So, the image classification will categorise each pixel 
into at least one of the classes.  The statistical decision rules are used which allow grouping of 
the pixels in different classes.  
 
In optical remote sensing, there are broadly two classification techniques; supervised and 
unsupervised classification. Both the approaches of classification have their own strengths and 
weaknesses associated with the classification process and results of the analysis. These are 
briefly explained below. 
 
(A) Supervised Classification  
Supervised classification consists of three distinct stages; training, allocation and testing, as 
shown in Figure 5.44. Training is the first stage where the identification of a sample of pixels 
of known classes is done with the help of reference data, such as field visits, existing maps and 
aerial photographs. The DN values of these known classes are determined to check the 
homogeneity.  In supervised classification, an analyst uses previously acquired knowledge of 
an area, or a priori knowledge, to locate specific areas, or training sites, which represent 
homogeneous samples of known land use and/or land cover types. These classes are 
interactively marked on the digital image in the form of polygons. Based on statistics of these 
training sites, each pixel in an image is then assigned to a user-defined land use type (e.g., 
residential, industrial, agriculture, etc.) or land cover type (e.g., forest, grassland, snow cover, 
etc.).  
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In the second stage, the training pixels are used by the software to derive various statistics for 
each class, and are correspondingly assigned signatures. These samples are referred to as 
training areas or samples. In supervised classification, the analyst identifies the homogeneous 
representative samples of different land use and land cover types (information classes) of 
interest on the imagery. Information classes imply that the actual land cover of the area under 
consideration which the analyst wants to classify, like vegetation cover, agriculture, urban or 
water bodies.  A histogram for each band of the training areas/samples can be drawn. The 
normal histogram with a single peak would indicate a single class but a bimodal response would 
indicate two class present in the training pixels. In case, some training pixels are to be dropped 
or new added, it can also be done here itself. Thus, the classification of image data may be 
improved if each of the class in training sample has one single peak in the histogram. 
 

 
Figure 5.44 Steps in supervised classification (Alakhouri, 2014) 

 
Training process helps in collection of statistical parameters which describe the spectral 
response pattern for the information classes that are being considered for image classification. 
Thus, a sufficient number of homogeneous training samples are required for each class to 
represent the tonal variation present within each class in the image. The variation in spectral 
reflectances of a training set per class in multispectral bands is used to derive the statistics.  It 
is important that the training sites are well distributed throughout the image, as far possible, as 
they are the representative samples for the entire image. Training sets also increase the chance 
to incorporate the site specific variations of that class.  
 
One of the important points in supervised classification is to avoid overlap in the training 
spectra for each class through the spectral plot. It is therefore important to identify the 
combination of bands that might be best for discrimination of classes through scatter plots 
between two spectral bands. The scatter plot is a graphical representation of DN values of two 
bands data; one on x-axis and another on y-axis. The scatter plots provide information related 
with the spectral separability. The training sample size is also important in classification which 
might vary from a minimum of 10N -100N per class, where N is the number of bands.  The 
selection of accurate training areas is based on the analyst's familiarity and knowledge with the 
geographical area and actual surface cover types obtained through site surveys and present in 
the image. For each class, several training samples are identified from the images. 
 
In the third stage, the remaining pixels of the image are allocated to the same class with which 
they show greatest similarity based on the established signature files in the second stage. Once 
the statistical characteristics are computed for each information class, the image is classified 
using any method, like Parallelepiped classifier, Minimum distance or Maximum likelihood 
classifier. For details of these techniques, refer Garg (2022). For the training samples, digital 
values (spectral signature) and their statistics in all spectral bands are used to "train" the 
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software, and to recognize spectrally similar areas for each class. The known spectral signature 
for each class is then compared by the software to the matching signatures of unknown pixels 
and labeled the class as soon as it closely resembles the signature. This process is repeated for 
each unknown/unclassified pixel in the image. Figure 5.45 summarizes the supervised 
classification procedure in the form of a flow diagram. 
 
It is important to note that training sites developed in one scene may or may not be replicable 
to entire study area due to variation in ground objects, ground conditions, illumination 
conditions, or atmospheric effects, which may change from one area to another.  Similarly, 
training samples may not be usable directly across time due to lighting conditions, cloud cover 
response and due to growth of various vegetation types. At the end of classification, if a 
particular class has not been picked up properly by the software, the image is again classified 
by refining the training areas/samples for that class. The process allows interpreter to refine the 
training areas/samples several times, till a satisfactory result is obtained.  It is an iterative 
process, and the analyst "supervises" the classification of images into a defined set of classes. 
That’s why it is known as supervised classification method. Thus, in a supervised classification, 
the information classes are identified which are then used to determine the spectral classes 
representing them. Accuracy of supervised classification results would depend entirely on the 
collection of a sufficient number of training sites, and purity of samples. 

 
(B) Unsupervised classification  
This method is almost opposite to the supervised classification process. The unsupervised 
classification is very useful technique to classify the remotely sensed image where the field 
data/reference data are not available. Here, the image is classified purely based on the spectral 
variations of the classes to identify the major classes that already existed in the image. 
Unsupervised classification techniques do not require training sample signatures, prior to 
analysis of the scene. Statistical algorithms group DN values with similar pixels into various 
spectral classes, and later analyst will identify or combine these spectral classes into 
information classes (Jensen 2005). Spectral classes are grouped, solely based on DN values in 
the data, and then these DNs are matched by the analyst to information classes. Several 
clustering algorithms are used to determine the natural (statistical) groupings in the image data. 
The basic assumption in unsupervised classification is that a particular land cover in a scene 
would form a single cluster. Thus, the algorithm classifies the pixel data based on similar 
properties of the data itself. Figure 5.45 shows various steps involved in the unsupervised 
classification procedure. 
 
In unsupervised classification, only major land classes are separated as clusters, while for 
smaller classes it may be not be possible. The decision for the number of clusters may be based 
on histogram analysis of the reflectance values. Usually, the analyst specifies the number of 
groups or clusters (classes) to be identified from the scene. The analyst also specifies the 
parameters related to the separation distance among the clusters, number of iterations required, 
and the variation (like standard deviation) within each cluster, as input to software. Often, the 
number of peaks as seen in the histogram can also be considered as the number of clusters 
present in the scene. The iterative clustering process may result into some clusters that the 
analyst wants to subsequently combine, or clusters that should be split further, based on 
ancillary/reference data available for the site. Alternatively, the complete process can be re-
started by changing the input parameters into the software, till a satisfactory result is obtained. 
Thus, unsupervised classification is faster and less dependent on human intervention. 
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Figure 5.45 Broad steps involved in supervised classification and unsupervised classification procedures 

 
There are two most popular clustering methods used for unsupervised classification; K-means 
and Iterative Self-Organizing Data Analysis Technique (ISODATA). These two methods rely 
purely on spectrally pixel-based statistics and require no prior knowledge of the characteristics 
of the themes being studied. In K-means approach, classes are determined statistically by 
assigning the pixels to the nearest cluster mean based on all available bands. The result of the 
K-means clustering could be influenced by the number of cluster centers specified, the choice 
of the initial cluster centre, the sampling nature, properties of the data, and clustering 
parameters. The ISODATA method uses the minimum spectral distance to assign a cluster to 
each pixel. The method requires a specified number of arbitrary cluster means or the means of 
existing signatures. It then processes the data repetitively, so that those means shift to the means 
of the clusters in the data. The input to ISODATA is number of clusters: 10 to 15 per desired 
land cover class, convergence threshold: percentage of pixels whose class values should not 
change between iterations; generally, set to 95%, and the maximum number of iterations: 
ideally, the convergence threshold should be reached. It should set “reasonable” parameters so 
that convergence is reached before iterations run out. In the iterations, pixels assigned to 
clusters with closest spectral mean; mean recalculated; pixels reassigned. The process 
continues until maximum iterations or convergence threshold reached. A graphical example is 
shown in Figure 5.46, where left graph shows the results of clustering by ISODATA after first 
iteration, and right graph shows the results after the second iteration. One may see the changes 
in the size of clusters. This way iteration continues till the specified threshold value is matched. 
 

  
 Figure 5.46 ISODATA Clustering techniques, result after (left) first iteration, and (right) after second iteration 
(Richards, 2013) 
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The supervised technique has some advantage over the unsupervised approach, as in supervised 
approach, information categories are distinct first, and then their spectral separability is 
examined while in the unsupervised approach, the software determines spectrally separable 
classes based, and then defines their information values (Lillesand and Keifer 1994). 
Unsupervised classification is easy to apply, and does not require analyst specified training 
samples. It automatically converts raw image data into useful information as long as there is 
higher classification accuracy (Langley et al., 2001). But, the disadvantage is that the 
classification process has to be repeated, if new classes are added. Figure 5.47 presents the 
results of supervised and unsupervised classification. 
 

 
Figure 5.47 (a) Supervised, and (b) unsupervised classification of SPOT 5 image of the area (Ismail et.al., 2009) 
 
While using high resolution images, it is still difficult to obtain satisfactory results by using 
supervised and unsupervised methods alone. Researchers have therefore developed advanced 
classification procedures to get high speed and better accuracy. These are summarised in Table 
5.9. 
 

Table 5.9 Various image classification techniques along with their salient characteristics (Garg, 2022) 
Methods Examples Characteristics 

 
Supervised Maximum Likelihood, 

Minimum 
Distance, and Parallelepiped 
classification etc. 

Analyst identifies the training sites to represent 
classes and each pixel is classified based on the 
statistical analysis 

Unsupervised ISODATA and K-means etc. Prior ground information is not required. Pixels with 
similar spectral characteristics are grouped 
according to specific statistical criteria 

Parametric Maximum Likelihood 
classification and Unsupervised 
classification, etc. 

Data are normally distributed, Prior knowledge of 
class density functions 

Non-parametric Nearest-neighbor classification, 
Fuzzy classification, Neural 
networks and support Vector 
machines, etc. 

No prior assumptions are made 

Non-metric Rule-based Decision tree 
classification 

Can operate on both real-valued data and nominal 
scaled data statistical analysis 

Hard (parametric) Supervised and Unsupervised 
classifications 

Classification using discrete categories 
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Soft (non- 
parametric) 

Fuzzy Set classification logic Considers the heterogeneous nature of real-world, 
Each pixel is assigned a proportion of the in land 
cover type found within the pixel 

Pre-pixel  Classification of the image pixel by pixel 
Object-oriented  Image regenerated into homogenous objects, 

Classification preformed on each object and pixel 
Hybrid 
approaches 

 Includes expert systems and artificial intelligence 

 
5.17.4 Accuracy assessment 
The increased use of remote sensing data and techniques has made analysis faster and more 
powerful, but the spectral and spatial complexity in the images have also created increased 
possibilities for errors. Thematic maps generated from remotely sensed image may contain 
some errors because of; (i) geometric error, (ii) atmospheric error, (iii) clusters incorrectly 
labeled after unsupervised classification, (iv) training sites incorrectly labeled for supervised 
classification, and (v) separability of classes. 
 
Image classification is considered to be incomplete without estimating the accuracy of 
classification. It measures the agreement between a reference (assumed as 100% accurate) and 
a classified image of unknown accuracy. The accuracy assessment or error analysis is the 
quantitative comparison to validate the classified map with the actual reference data/image.  
 
Accuracy assessment of land use or land cover classification obtained by remote sensing 
images is necessary to evaluate the quality of classification. Accuracy assessment is a critical 
step in the use of the results of analyses from remotely sensed data. A typical approach for 
validation and accuracy assessment is to use a statistically sound sampling design to select a 
sample of ground locations (number of pixels) in the scene. The land use or land cover 
classification assigned at these ground locations is actually compared with the true 
classification to ascertain the accuracy. An error matrix or confusion matrix is thus generated, 
as shown in Figure 5.48. An error matrix is a common tool to assess the accuracy of 
classification. Error matrix compares the pixels or polygons in a classified image against the 
ground reference data (Jensen 2005). A confusion matrix (or error matrix) is usually a 
quantitative method of characterising the image classification accuracy. It shows a 
correspondence between the classification results with respect to a reference image. The error 
matrix is created with the help of reference data which includes thematic map, aerial photos, 
ground surveys, GPS surveys and a high resolution satellite data used for classification. 
 
To select the ground samples, five important sampling techniques are often used. These are:   
 
1. Simple Random Sampling: observations are randomly placed, and no rules are used. It is 

done using a completely random process. 
2. Systematic Sampling: observations are placed at equal intervals according to a planned 

strategy. 
3. Stratified Random Sampling: a minimum number of observations are randomly placed in 

each class. Sampling points are generated proportionate to the distribution of classes in 
the image 

4. Stratified Systematic Un-aligned Sampling: a grid is laid out which provides even 
distribution of randomly placed observations. 

5. Cluster Sampling: randomly placed “centroids” used as a base of several nearby 
observations.  The nearby observations can be randomly selected, systematically selected, 
etc. 
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Figure 5.48 Error matrix or Confusion matrix 

 
It is not practically possible to test each and every pixel in the classification image, and 
therefore a representative sample of reference points in the image with known class values is 
used. Ground reference pixels earlier used to train the classification algorithm are not used now 
for the assessment of classification accuracy. Normally half of the training samples are used 
for classification, and remaining half for estimating the accuracy.  The accuracy of a 
classification can be defined as; (i) Overall accuracy, (ii) Producer’s accuracy, (iii) User’s 
accuracy, and (iv) Kappa coefficient.  
 
The overall accuracy of the classification map is determined by dividing the total correct pixels 
(sum of the major diagonal) by the total number of pixels in the error matrix. The total number 
of correct pixels in a category is divided by the total number of pixels of that category as derived 
from the reference data (i.e., the column total). It indicates the probability of a reference pixel 
being correctly classified, and is a measure of omission error. This statistics is called the 
producer’s accuracy because the producer (the analyst) of the classification is interested in 
how well a certain area can be classified. Thus, the errors in classification can further be 
obtained individually for each class.  The classification accuracy for each class indicates if 
there is any over-estimation or under-estimation in classification based on the input from 
reference data.  
 
Columns of the table in Figure 5.48 are the reference (ground truth) classes, while rows are the 
classes of classified image whose accuracy is to be assessed. Various cells of the Table show 
number of pixels for all the possible correlations between the ground truth and the classified 
image. The diagonal elements of the matrix are highlighted which contains the number of 
correctly identified pixels. Classification overall accuracy is obtained by dividing the sum of 
these diagonal pixels by the total number of pixels. It is computed as: 
 
{( 37 + 25 + 43 ) / 142} 100 ≈ 0.74       (5.11) 
 
The overall accuracy measures the accuracy of the entire image without reference to the 
individual categories. It is sensitive to differences in sample size, and biased towards classes 
with larger samples. In addition, the accuracy of individual class needs to be assessed. The non-
diagonal cells in the matrix contain classification errors, i.e., the number of pixels in reference 
image and the classified image don’t match. There are two types of errors: under-estimation 
(omission errors) and over-estimation (commission errors). 
 
If the total number of correct pixels in a class is divided by the total number of pixels that were 
actually classified in that category, the result is a measure of commission error. This measure, 
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called the user’s accuracy or reliability, is the probability that a pixel classified on the map 
actually represents that category on the ground. For any class, error of commission occurs when 
a classification procedure assigns pixels to a certain class that don’t belong to it in reality. 
Number of pixels incorrectly allocated to a class is found in column cells of the class above 
and below the main diagonal. The sum of these yellow is divided by the total number of class 
pixels to get the commission error for class A: 
 
{( 9 + 11 ) / 57} 100 ≈ 35%        (5.12) 
 
The Producer’s accuracy is the number of correctly identified pixels divided by the total 
number of pixels in the reference image. For class A, it is: 
 
(37 / 57) 100 ≈ 65%         (5.13) 
 
The Commission error quantifies the Producer’s accuracy.  The sum of Error of Commission 
and Producers Accuracy for class A is 100%.  
 
The probability a reference pixel is being properly classified measures the “Omission error” 
(reference pixels improperly classified are being omitted from the proper class). For any class, 
error of omission occurs when pixels that in fact belong to one class, are included into other 
classes. In confusion matrix, number of such pixels is found in the row cells to the left and to 
the right from the main diagonal. The sum of these orange cells is divided by the sum by the 
total number of pixels in the classified image to compute omission error: 
  
{( 3 + 7 ) / 47} 100 ≈ 21%        (5.14) 
 
User’s accuracy is the number of the correctly identified pixels of a class, divided by the total 
number of pixels in that class in the classified image. For class A, it is computed as: 
 
(37 / 47) 100 ≈ 79%         (5.15) 
 
The Omission error quantifies the User's accuracy. The sum of Error of Omission and User’s 
Accuracy for class A is 100%.  
 
The overall accuracy of classification can sometimes be misleading, as it does not reveal if 
error was evenly distributed between the classes or if some classes were really badly classified 
and some really good. Therefore, it is always better to compute the values of commission and 
omission errors. It is likely that the overall accuracy of an image classification might be quite 
high, whereas an individual class may have a low accuracy. If the accuracy of individual classes 
is most important to users, the classification results can’t be accepted as such, even if the overall 
accuracy is coming out be higher. Additionally, the producer’s and user’s accuracy can’t be 
separately used as an indicator of the classification accuracy, as these values do not provide the 
complete details. 
 
Unit Summary 
This unit discusses various remote sensing data products and their utilisation. It focusses 
mainly on the use of optical satellite images for carious purposes. The technical terms used in 
remote sensing are defined. Various comonents of remote sensing and interaction of EMR with 
the atmosphere are discussed. Laws governing black body are described. Resolutions are very 
important while dealing with the satellite images, so these have been detailed out in the unit. 


