
Chapter 12: Integrating SciLab/MATLAB with
Python for Scientific Computing

Introduction
Python has rapidly emerged as one of the most powerful and versatile pro-
gramming languages in the field of scientific computing due to its readability,
rich ecosystem of libraries (NumPy, SciPy, Matplotlib, Pandas), and ability
to integrate with other platforms. SciLab and MATLAB, on the other hand,
are specialized tools for numerical computation and simulation. This chapter
explores the integration of Python with SciLab and MATLAB, empowering users
to leverage the computational strengths of these platforms while maintaining
the flexibility of Python scripting.

12.1 Need for Integration of SciLab/MATLAB with Python
• Increasing reliance on multi-language platforms in scientific computing.
• Access to advanced plotting, data analysis, and machine learning

libraries in Python (e.g., matplotlib, pandas, scikit-learn).
• Interfacing legacy MATLAB or SciLab code with modern Python-based

workflows.
• Enhancing productivity by using Python as a controller and MAT-

LAB/SciLab as computational engines.

12.2 Basics of Python-MATLAB Integration
12.2.1 MATLAB Engine API for Python

• MATLAB provides an official Python API that allows Python scripts
to start and interact with a MATLAB session.

• Installation:

• cd "matlabroot/extern/engines/python"
python setup.py install

• Basic usage in Python:

• import matlab.engine
eng = matlab.engine.start_matlab()
result = eng.sqrt(16.0)
print(result)

1



12.2.2 Calling MATLAB Functions from Python

• Data types must be converted between Python and MATLAB.

• MATLAB engine supports:

– Basic numeric types
– Arrays (matlab.double, matlab.int32, etc.)
– Strings and cell arrays

• Example:

• a = matlab.double([[1, 2, 3], [4, 5, 6]])
b = eng.sum(a, 1)

12.3 Executing MATLAB Scripts in Python
• MATLAB .m scripts can be executed using:

• eng.run('myscript.m', nargout=0)

• Parameters can be passed via workspace:

• eng.workspace['x'] = 42
eng.eval('y = x + 10;', nargout=0)
result = eng.workspace['y']

12.4 Integrating SciLab with Python
12.4.1 Installing and Configuring SciLab for Python

• Use the PyScilab package or call SciLab via subprocess interface.
• SciLab does not offer as seamless an engine API as MATLAB, but integra-

tion is still achievable.

12.4.2 Using subprocess to Call SciLab from Python

• Run SciLab scripts through command line:

• import subprocess
subprocess.run(["scilab-cli", "-f", "myscript.sce"])

• Data exchange can be handled using files (CSV, TXT) or command-
line arguments.

2



12.5 Data Exchange between Python and MATLAB/SciLab
12.5.1 File-Based Communication

• Use .mat files to share data:

– Python: scipy.io.savemat, loadmat
– MATLAB: save, load

• For SciLab, use .csv or .txt files.

12.5.2 Shared Data via APIs

• MATLAB Engine API supports:

– Importing data to workspace
– Extracting output data

12.6 Visualization and Plotting
12.6.1 Using MATLAB Plots in Python

• MATLAB plots can be generated from Python calls:

• eng.plot(matlab.double([1, 2, 3]), matlab.double([4, 5, 6]),
nargout=0)
eng.grid(nargout=0)

12.6.2 Transferring Results to Python for Visualization

• Data generated in MATLAB/SciLab can be retrieved and plotted using
matplotlib.

12.7 Use Cases and Applications
12.7.1 Signal Processing Example

• Compute FFT in MATLAB and analyze in Python:

– Generate signal in MATLAB
– Transfer result to Python for advanced plotting and comparison

12.7.2 Control Systems

• Run simulations in MATLAB/SciLab
• Use Python to optimize parameters or use machine learning models to

tune controllers

3



12.8 Advantages and Challenges of Integration
12.8.1 Advantages

• Flexibility and power of Python + domain-specific MATLAB/SciLab
functions

• Access to large ecosystem
• Reuse of existing code base

12.8.2 Challenges

• Data type conversion overhead
• Performance issues with large datasets
• Version compatibility between MATLAB/Python
• Less native support in SciLab (compared to MATLAB)

12.9 Best Practices
• Use modular scripts in MATLAB/SciLab for easy calling
• Validate data conversion formats before large-scale usage
• Prefer file-based or API-based structured exchange
• Maintain version documentation of Python and MATLAB/SciLab

installations

4


	Chapter 12: Integrating SciLab/MATLAB with Python for Scientific Computing
	Introduction
	12.1 Need for Integration of SciLab/MATLAB with Python
	12.2 Basics of Python-MATLAB Integration
	12.2.1 MATLAB Engine API for Python
	12.2.2 Calling MATLAB Functions from Python

	12.3 Executing MATLAB Scripts in Python
	12.4 Integrating SciLab with Python
	12.4.1 Installing and Configuring SciLab for Python
	12.4.2 Using subprocess to Call SciLab from Python

	12.5 Data Exchange between Python and MATLAB/SciLab
	12.5.1 File-Based Communication
	12.5.2 Shared Data via APIs

	12.6 Visualization and Plotting
	12.6.1 Using MATLAB Plots in Python
	12.6.2 Transferring Results to Python for Visualization

	12.7 Use Cases and Applications
	12.7.1 Signal Processing Example
	12.7.2 Control Systems

	12.8 Advantages and Challenges of Integration
	12.8.1 Advantages
	12.8.2 Challenges

	12.9 Best Practices


