
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Module – 07

Lecture - 24

DAGs: Longest Paths

Let us continue to look at DAGs and in this section we will look at the different problem

called identifying the Longest Path in a DAG.

(Refer Slide Time: 00:08)

So, recall that the directed acyclic graph is just a directed graph in which there is no

directed path from any vertex back to itself, so it is direct and it is acyclic.

242

(Refer Slide Time: 00:20)

Any directed acyclic graph can be topologically ordered. If you think of the vertices has

been 1 to n, you can write out 1 to n as a sequence in such a way that for every pair j, k

which is an edge if j, k is an edge in my graph, then j will appear before k in the

sequence. So, if you think of these as tasks it is dependencies means that I can do the

task in such a way that before I do k, I would have finished it is dependence task j. So,

this is called a topological sorting.

(Refer Slide Time: 00:51)

243

So, let us look at different question about DAGs. So, supposing we have this DAG and

we imagine that the vertices represent courses and the edges are prerequisites. Now,

these are courses that we have to do to may be complete the degree, every course

requires a semester, but we can do more than one course in a semester. So, the question

is, what is the minimum number of semesters that I need to complete this program

consisting of these 8 courses, with these prerequisites.

So, clearly I can start putting courses 1 and 2 in the first semester, because they have no

prerequisites, so they can be done immediately. Now, having done 1 and 2 I can do 3,

because 3 has only depends on 1 and 2. Similarly, I can do 4 and 5 because they depend

only on 1, now 8 depends on 1 and 2 I need the material or at least depends on 2. I need

2 have done, 2 to do 8, but I still do cannot do 8, because it also requires 5, 4 and 7. So,

at this point we only courses which are available at 3, 4 and 5. So, in my second semester

I can do 3, 4 and 5.

Now, the only course for which all free prerequisites are satisfied is 6, for 7 requires 6

which is not been done and 8 requires 7 which is not been done. So, in the third semester

I am struck with doing only one course namely 6. In the 4th semester, I can do 7 and

finally, after 5 semesters I can complete this (Refer time: 02:12). So, in general we can

ask this question, if I think of these as DAG is representing courses, what is the

minimum number of semesters.

(Refer Slide Time: 02:24)

244

Now, this problem corresponds to asking for the longest path in the DAG ((Refer Time:

02:28)) what we are saying is that it takes 5 semesters to complete 8, because there is a

chain of dependencies, where 8 depends on 7, 7 depends on 6, 6 depends on say 3 or 4 it

does not matter which one we choose and 3 depends on 1 and this chain forces us to

spend 4 semesters, because it is a chain of length 4, 4 semesters before I can do 8. Notice

that it is not the shortest chain, because there are shorter chains for example, 8 to 2 takes

back to a vertex which has indegree 0, but this does not help us because after 2 I cannot

do it. So, I must wait for everything that has to happen before 8 in order to get the job

done. So, unlike other problems where we might be looking shortest paths, here we are

actually interested in the longest path.

So, we can set up this problem as follows, so we can say that for any vertex which has

indegree 0, the longest path to that vertex is of length 0, because I can do it immediately.

And on the other hand, if I have a vertex whose indegree is not 0, then it has some

incoming edges. So, I have a vertex k, so I must wait for all of these to finish and then do

it. So, if I take all of these I have to take, among all of these I would take the maximum

length, because that will be the last thing to finish and after that I have to do plus 1

account for k. So, if indegree is not 0 then the longest path to k has length 1 plus the

maximum the longest path to all it is incoming neighbours.

(Refer Slide Time: 04:01)

245

So, therefore in order to compute the longest path to k, I need to compute the longest

path to all it is incoming neighbours. Now, if we have arrange the vertices in topological

order and we compute the longest path in that sequence, then when we get to k every

incoming neighbour j will be on it is left. Hence, we would already compute it is longest

path, so we would be able to take the maximum number of all of these and add them.

So, by sorting these vertices in topological order, I can then compute the longest path in

the same order with the guarantee that when I want to compute the longest path to begin

vertex, I have all the information available need to do that namely all the longest path for

it is incoming neighbours.

(Refer Slide Time: 04:48)

So, if I do it naively then I will write out my vertices in some topological order and now

when I come to this vertex and I want to compute it is longest path, I will look at in my

graph all the incoming edges and they will all be from vertices which appear before. So,

I can take the value here, the value here, the value here and then take it is maximum and

then add here. So, actually we will see that you do not need to do this backward, you can

actually do it forward.

So, we can actually incrementally compute the value at i k as you are going forwards.

Because, going backwards requires you to scan this list and look for all the incoming

neighbours. So, we will kind of implicitly do this longest path calculation along with

topological sort side by side, as we will see in the next example.

246

(Refer Slide Time: 05:42)

So, here is an example in which we are going to compute the longest path as we are

computing the topological order. So, as before the red numbers I given as the vertices are

used for topological sort and they denote the indegrees. So, the initial indegrees are given

where the initial edges in our graph and what we do is we compute the longest path

incrementally by starting by assuming that the longest path to every vertex is actually 0.

(Refer Slide Time: 06:15)

Now, when we enumerate a vertex in a topological sort what we did earlier was to update

the indegrees, so this is something that we already did. But, now the additional thing that

247

we do is we say that well if the vertex 1 add to be enumerated before 3, 4 and 5, then

among the values that I know for the incoming edges of 3, 4 and 5, 0 was the maximum

in length. So, I must do 1 plus that, so these paths are at least of length 1. So, the longest

path to 3, 4 and 5 is at least 1.

(Refer Slide Time: 06:47)

Now, if I enumerate vertex 4, then it is longest path is at least 1, so therefore, the longest

path to 6 must be at least 1 plus 1. Similarly, the longest path to 8 must be at least 1 plus

1 and of course, the indegrees will also reduce as before. So, the indegree of 6 goes on to

1, the indegree of 8 goes on to 3, but the longest path to 6 is now the longest path to 4

plus 1, so it is 2, it is same for 8. Now, supposing I enumerate the vertex 2, now 2 will

again say that the longest path, because of 2 the longest path to 3 is 1, but it is already 1,

so we do not change it.

This will say because of 2 the longest path to 8 is at least 1, but we know it is at least 2,

so again we do not change. So, when we delete a node, then we take basically the current

value of the longest path for it is outgoing thing plus 1, the current value of the deleted

node plus 1 and what is already known about at node and we keep the maximum. So, in

this case this 1 will become 0, this 3 will become 2, but here there is no change and here

there is no change.

248

(Refer Slide Time: 07:51)

And likewise when I remove this 5, this 2 will become 1, but because 1 plus 1 is 2 and

we already know that 8 has an longest path of at least 2, we do not make any change in

the 2.

(Refer Slide Time: 08:05)

Now, when we go to 3, 3 says it has a longest path of 1, so therefore because of 3 the

longest path is 6 at least 2, but we already know it is 2, so again there is no change.

249

(Refer Slide Time: 08:17)

Now, we shall do something interesting, so we say that 6 has a longest path of 2, 7 we so

far I have believed it has longest path of 0, but through 6 it has a longer path. So, the path

to 7 must now be updated from 0 to 3.

(Refer Slide Time: 08:34)

And now because of this, when we go from 7 to 8, the longest path for 8 must be updated

from 2 to 4.

250

(Refer Slide Time: 08:46)

And now finally, this is my last vertex, so I just enumerated and I compute its longest

path as 4.

(Refer Slide Time: 08:52)

So, what this is said is the longest path is 4, now we said that we done in 5 semester, this

same example with basically means that in the first semester all those whose longest path

is 0, the second semester all those whose longest path is 1 and so we have the same

sequence you had before. So, you initially do 1 and 2 in the first semester, then we do 3,

4 and 5 in the second semester, then we do 6 in the third semester, 7 in the fourth

251

semester and 8 in the fifth semester. So, this is the exactly the solution that we obtained

informally in our initial example.

(Refer Slide Time: 09:22)

So, this pseudo code for longest path as we saw is very similar to what we did for the

topological sort, we just have keep track of this extra longest path value. So, when we

initialized the indegree we also initialize the longest path to i to be 0 for every vertex. So,

this is we are doing again first the adjacency list version. So, we do n squared work for

each vertex, we compute the indegree by looking at the column of the adjacency matrix

with entry column entry i.

But, we also update, we initialize longest path to each i is 0, now when we are doing this

enumeration as before we choose any vertex indegree 0, we enumerated and we update

the indegree of this vertex to minus 1. So, it is no long were in contention for we chosen

again. Now, for all it is out going neighbours, we update the indegree and we also update

the longest path.

So, we take the longest path that we already know to that neighbour, the LPT of k and

we take 1 plus the longest path for this node and whichever is larger we replace that

pattern PT of k. So, it is a very simple variation of the basic topological ordering thing

which allow also compute the longest path.

252

(Refer Slide Time: 10:34)

So, this has complexity order n squared for the same reason that we had found that

topological short with adjacency matrix or order n squared. Because, we have the nested

loops in order to scan all the neighbours, so as before we can update this whole thing

using adjacency list and a queue to make it a linear then algorithm.

(Refer Slide Time: 10:56)

So, if you go back and look at the topological ordering algorithm, you will find that the

same changes are required to make a additional compute the longest path. So, what we

do is initializing is again the same we do it for the every vertex. So, this is an order n

253

step, we initialize both the indegree and the longest path. Then we go through all the

adjacency list and together this order m step to compute the initial indegrees.

And now we have an order n step in order to setup this queue, where we will process the

topological ordering. And then, we do and outer loop of order n, so this is an order n

loop, because everything is going and to the queue once and come out. So, we are going

to remove from the queue n times and now because we are scanning the list across all the

n iterations we are going to process each edge once. So, the total work done in this loop

is going to be order n.

So, we do exactly as before we update the indegree, we update the longest path to k as

maximum of the current value and 1 plus the value of the current node and if we do find

that the k is now become a vertex to indegree 0 we added to the key.

(Refer Slide Time: 12:13)

So, DAGs are very useful because there many situations, where we want to model

dependencies between various objects. And topological ordering is a canonical algorithm

to list out vertices without violating dependencies, what we are seen in today is that, you

can compute the longest path to the DAG and longest path to the DAG in some sense if

we can list out vertices in groups, longest path in a DAG represents the minimum

number of steps in order to enumerate all the vertices.

254

So, if we going to courses in groups, then if you want to bunch it and do things which are

the same level at one time, then the minimum number of steps we need minimum of

semesters to complete set of courses or the minimum number of days to complete the set

of tasks is given by the longest path. Now, it is important that we have been to able to

find efficiently linear time algorithm for longest path only because restricted ((Refer

Time: 13:12)) DAGs.

If we look at arbitrary graphs which are not necessarily DAGs and we want to find

longest path of course, if we have loops there are longest path will be undefined, because

the can go around and around loop. So, if we define a longest path to be one in which we

have a sequence of vertices with no duplicates. So, the length is at most 10, then arbitrary

graph this is a very challenging problem and there is no known efficient algorithm. In

fact, it is a part of a group of highly interactively problems which all are equivalent to

each other and all believe to be very hard.

So, DAGs are a very significant subclass of graphs which have many practical

applications and which admit efficient solutions for very important problems, which

have not in general algorithm easily and the full class of graphs.

255

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

