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Lecture -47  

Various Operations on Graphs 
 
Hello everyone, welcome to this lecture. The plan for this lecture is as follows. In this lecture we 

will discuss.  

(Refer Slide Time: 00:27) 

 

Various operations that we can perform on graphs. We will see various mechanisms of 

representing graphs. We will discuss the graph isomorphism problem and we will define the 

connectivity in a graph.  

(Refer Slide Time: 00:40) 
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So, it turns out that since graph is nothing but a collection of two sets we can perform various set 

theoretic operations on a graph and obtain new graphs. So, let us discuss some of the important 

operations which we can perform on the graphs. So, we will first define what we call as the 

subgraph of a graph, if you are given a graph  = (,) with the vertex set being V and edge set 

being E.  Then, a graph  = (,) with vertex set W and edge set F will be called as a subgraph 

of G, if the vertex set W of H is a subset of the vertex set V of G, namely all the vertices of H 

should be the vertices of G and the edge set F of H should be an edge set, there should be a subset 

of the edge set E of G, that means all the edges of F should be present in. So, that is a simple 

straight forward definition of a subgraph. Now let us define what we call a proper subgraph of a 

graph. 

 

So, we will first give an intuitive definition what exactly we can think of a proper subgraph and 

then we will see that definition is not correct. So, remember when we define the proper subset of 

a set we say that  ⊂ , if A is a subset of B and there is something extra which is always there in 

B which is not there in A. So, let us try to extend that definition in the context of a proper subgraph. 

 

So, say my definition is that H graph H will be called as a proper subgraph of G if either the vertex 

set of H is a proper subgraph, ⊂  it is a proper subset of the vertex set of G and the edge set of 

H,   ⊂ it is a proper subset of the edge set of G, suppose that is my definition. But this is my 

definition, then with respect to this definition if I take my graph G and H to be this then H will not 
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be considered as a proper subset of G. This is because all the vertices of H are the vertices of G as 

well, so this conditions that  ⊂  is not satisfied. So, as per this definition, I will say that H is 

not a proper subgraph of G but this is a proper subgraph of G. Because there is something extra in 

G which is not there in H, namely the edge between the vertex b and c is there in G but that is not 

there in the graph H.  

 

So, that means the definition that I gave here is not the correct definition, so that is why the right 

definition of the proper subgraph is the following. I will say that H is a proper subgraph of graph 

G if it is a subgraph of G because that is definitely the requirement. And it is a subgraph which is 

different from the graph G or the parent graph. If that is the case then I will say that my graph H 

is a proper subgraph of the graph G. So this condition that G is not equal to H takes care of the fact 

that there is something extra in the graph G which is not there in the graph H.  

(Refer Slide Time: 04:16) 

 

Now let us next define what we call as induced subgraph. So, if you are given a graph  = (,) 

with vertex set V and edge set E and if I take a subset of vertices W, then G’ is called the induced 

subgraph or the induced by the vertex set W such that the vertex set of G’ is W and the edge set 

E’ of G’ consists of only those edges whose both the end points are within the subset W.  

 

So, basically what this induced subgraph tries to do is the following. You are given a collection of 

vertices W, that W could be empty or it could be the entire set of vertices V. So, you are given 
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some subset W and you are focusing only on that part of the graph G where all the edges have 

endpoints within the subset W only. Even if there are all the edges where one of the end points is 

outside the subset W are not focusing on those edges.  

 

So, that is the definition of the induced subgraph, so its vertex set will be W and the edge set will 

be only those edges, this should be (vi, vj), not (ei, ej), such that both the end points are members 

of the subset W. So, for instance if this is my graph G and if I take my  = {, }, then I am 

focusing only on that part of the graph G where the edges have their end points restricted within 

the subset W.  

 

So, that means I cannot take this edge, this edge is not allowed because one of the end points is a 

and that a is not within my subset W. Similarly, I cannot take the edge between a and c because 

one of the end points of this edge is the set a which is not there in my W. Whereas if I take my W 

to be the node a only, then I get an empty graph. Empty graph in the sense which has no edges 

because this edge will not be there as b is not within my W, this edge will not be there because the 

node c is not within my W and this edge also will not be there.  

(Refer Slide Time: 07:03) 

 

So, now let us see some set theoretic operations that we can perform on an existing graph to get 

new graphs, so imagine you are given a graph then the deletion of an edge is denoted by this 

operation. So, imagine a small e is an edge, so if I delete an edge then the vertex set does not get 
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disturbed, it remains the same it is only the edge set which gets affected. That means my new edge 

set will be the old edge set minus the edge e which I am excluding.  

 

Whereas if I am removing a collection of edges, even in that case my vertex set remains intact, it 

is only the edge set which gets affected, that means my new edge set will be the difference of the 

old edge set and the edge set E’ which I am deleting from the graphs. So, it is like saying the 

following; imagine your graph represents a computer network where the nodes are the computers 

and the edge represents a cable connecting two computers. So, if you remove a cable that does not 

mean that the corresponding computers also get deleted, the computers are still there, it is only the 

cables which are getting removed. Similarly, if I add a new edge that is expressed by this operation 

then my edge set gets affected, so I will be including a new edge, so I will be including a new edge 

and the end points of the edge e will be included in my vertex set.  

 

On the other hand, if I delete a vertex from my graph G, then definitely the vertex that gets affected 

and also the edge set gets affected. So, I have to remove all the edges whose one of the endpoints 

is v from my graph, it is like saying the following: again, if I take the fact that my graph represents 

a computer network then deleting a vertex is equivalent to saying that I am deleting or removing a

computer itself from my network. So, if I remove a computer from the network then whichever 

cable has one of its end points as that computer, those edges will not be there anymore in my 

computer network, so I have to modify my edge set as well. Whereas if I remove a set of vertices 

V’ then my new vertex set will be the difference of the old vertex set and the vertex of V’ and edge 

set E’ will be the following.  

 

I have to remove all the edges where one of the end points of the edge is in my subset V’. So, let 

me demonstrate these operations with respect to this graph, so imagine this is my graph G, if I 

remove the vertex a, then this edge e1 and edge e3 will no longer be there and I will get this reduced 

graph, whereas if I remove the cable connecting the node a and node b or the computer a and 

computer b then only the edge e1 vanishes, the vertex set remains the same.  

(Refer Slide Time: 10:40) 
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Now let us discuss the various data structures that we can use to represent graphs and people who 

have studied data structure, they must be knowing two of the common representations that we use 

to represent graphs. So, again I am explaining in the context of undirected graphs, but you can 

easily generalize this data structure to represent directed graphs as well, so we have what we call 

as the adjacency matrix representation, so this is a boolean matrix.  

 

So, if your graph G is consisting of vertex set V and edge set E and if the cardinality of the vertex 

set is n, then this matrix is an  boolean matrix and the (, )ℎ  =    ,  ∈ , 

otherwise it will be 0. And this representation is preferred for dense graph. What do we mean by 

dense graph? A graph which has a lot of edges, that means it is not the case that you have very few 

edges, that means you have lots of edges in the graph in which case a majority of the entries in 

your matrix will be 1.  

 

Whereas a sparse graph is the graph which has lots of vertices but very few edges, for such a graph 

the adjacency list is the preferred data structure for representation of the graph. So, what is this 

adjacency list? So, it is a collection of linked list, each link is basically a collection of n linked 

lists, so you will have the first linked list with v1 as the starting node, second linked list as with v2 

as the starting node and nth linked list with vn as the starting node and in v1 you will now link all 

the nodes which are incident.  
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You link all the nodes which are the endpoints of an edge with v1 as its one of the end points. That 

means in your graph G, you focus on the edges which have v1 as one of the end points, so for those 

edges find out the other end points and you put them in the linked list with v1 as the end point. So, 

basically the linked list starting with v1 list down all the neighbors of v1, similarly the linked list 

with v2 list down all the neighbors of v2 and so on.  

  

So, now you can see why this representation is very popular for representing sparse graph, that 

means if graphs which have only a very few edges, if you have very few edges then the size of 

each linked list will be very small. You do not need a huge matrix with lots of entries being zeros 

and only few entries being one, so these are the two popular representations for representing an 

undirected graph, they can be used even for representing directed graphs as well and there is this 

third data structure which is called as the incidence matrix.  

 

So, what is this incidence matrix? It is so again I am explaining, assuming an undirected graph, so 

this will be a matrix with || ||. And it basically represents the relationship between the edge 

and its endpoint. So, what it means is the following if you have an edge  = (, ) w then the 

entry number (, ) =   and   ,  = , otherwise and the remaining entries will be 0.  

 

So, for instance if this is my graph G, so there are 3 vertices, so three rows and there are three 

edges, so three columns. What are the endpoints of e1? The endpoints of e1 are a and b, so under 

the column e1, I only mark the entry for a row and b row as 1 to show that the end points of the 

edge e1 are a and b and all other column entries under e1 will be 0. Similarly, the end points of e2 

are b and c, so only the entry in row number b and column number e2 will be 1. And entry in row 

number c and column number e2 will be 1 and all other entries in column number e2 will be 0 and 

so on, so that is the incidence matrix.  

(Refer Slide Time: 16:16) 
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Now let us define a graph isomorphism. So, if you see these two graphs, pictorially they are drawn 

in a different way. So, the first graph is a rectangle whereas the other graph does not look like a 

rectangle graph because you might be saying that there are two edges which are crossing each 

other. But if you see closely structurally, they are similar graphs. What do I mean by structurally 

they are similar graphs, so both the graphs have the same number of nodes namely 4, same number 

of edges namely 4 edges and even though the vertex names are different in the two graphs.  

 

So, if I call this as graph G1 and this as graph G2, the name of the vertices of G1 are {, , ,} 

whereas the name of the vertices of G2 are {1, 2, 3, 4}, so you will say that how can they be the 

same graph because the vertex names are different. If I do not focus on the name of the vertices 

and the name of the edges but mentally think in my mind whether there exists a one-to-one 

correspondence between the vertices of the graph and the edges, then I find that the 2 graphs are 

structurally same. What does that mean?  

 

If I think in my mind that vertex a of G1 corresponds to vertex v1 of graph G2 and if I consider 

vertex b of graph G1 corresponding to vertex v3 of G2, then you can see that there exists an edge 

between a and b in graph G1 and similarly I can consider this edge as the edge e1 between the 

mapping of a and the mapping of b. Similarly, this node c, I can associate with the node v2 here, 

and you can see that if that is the case then the edge e2 in the graph G1 corresponds to the edge e2 

of this graph G2 and so on.  
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So, in that sense they are structurally the same graphs but drawn in a different fashion. In the same

way this graph G1 and this graph G2 are structurally same, so the node 1 of graph G1 corresponds 

to the node a of graph G2 and so on and you can then verify that structurally if I reinterpret graph 

G2, then I can redraw it in the same way as the graph G1. So, in that sense these pairs of graphs are 

isomorphic, they are structurally drawn differently, they are drawn differently but structurally they 

represent the same information.  

 

That means I can always redraw one of the graphs as another graph. So how do I formally define 

whether two graphs are isomorphic or not? So, imagine you are given two graphs G1 and G2, they 

are called as isomorphic and isomorphic graphs are represented by this notation. So, I will say that 

the two graphs are isomorphic, if I can define a bijective mapping between the vertex set V1 and 

the vertex at V2 such that the following holds.  

 

If you have an edge between the node u and v in the first graph, then you focus on the mapped u 

vertex in G2 and the mapped v vertex in G2 and there should be an edge between the mapped u 

vertex and the mapped v vertex in E2 as well and this implication is bi-implication, that means 

other way around should also hold. So, if you can find one such mapping, one such bijection 

between the vertex sets, then we will say that two graphs are isomorphic and isomorphism is 

denoted by the bijection, : 1 → 2.  

 

So, when we say that show me an isomorphism between graph G1 and G2 basically I am asking 

you to show the one-to-one correspondence between the two vertex sets but namely the vertex set 

of G1 and the vertex set of G2 such that this bi-implication is true. So, the graph isomorphism 

problem is the following: you are given two graphs G1 and G2 and you have to check whether they 

are isomorphic or not.  

 

Checking whether they are isomorphic or not is equivalent to checking whether there exists a 

bijection between the vertex sets of the two graphs such that bi-implication is true. So, what will 

be the naive algorithm to check whether two given graphs are isomorphic or not? If |1| = |2| =
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 ,the cardinality of the vertex sets of the two graphs is n. By the way a simple necessary condition 

for the two graphs being isomorphic is that they should have the same number of vertices.  

 

If one graph has more number of vertices than another how at the first place they can be 

isomorphic, they can never be isomorphic. So, imagine that the vertex set of both the graphs is of 

cardinality n, then a naive algorithm to check whether the two graphs are isomorphic is to try all 

possible ! bijection between the vertex at V1 and the vertex at V2 and for each of those bijections 

check this implication is true or not.  

 

So, indeed if the two graphs are isomorphic one of these ! bijections will satisfy the bi-implication 

and hence you can declare that the two graphs are isomorphic. But if all the ! bijections fail to 

satisfy this bi-implication, we will say that the two graphs are not isomorphic. But then what is the 

running time of this algorithm? You have to try ! bijections and ! is an enormously large 

quantity.  

  

So, that is why this naive algorithm will work only for the small values of n and it is still a big 

open problem or to come up with efficient algorithms or feasible algorithms to check whether two 

graphs are isomorphic or not.  

(Refer Slide Time: 22:45) 
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So, how do we verify whether two graphs are not isomorphic or not and we can verify whether 

two graphs are not isomorphic or not by checking for graph invariant properties. So, what are graph 

invariant properties? They are the properties which should be preserved by isomorphic graphs, that 

means these are the properties which should be there both in graph G1 as well as in graph G2 if at 

all they are isomorphic, that means if any of these properties is violated then you can declare that 

the two graphs are not isomorphic.  

 

So, some of the naive graph invariant properties which should be preserved by the isomorphic 

graphs are the following: they should have the same number of vertices, same number of edges 

number of vertices of a particular degree should be the same in both the graphs and so on. So, for 

instance if in your graph G1, there are two vertices of degree 2, then in G2 also there should be 

exactly two vertices of degree 2.  

 

Otherwise, the two graphs can never be isomorphic because you would like to associate a vertex 

of degree 2 in G1 with another vertex of degree 2 in G2 and vice versa. However, it turns out that 

if any of these graph invariant properties is violated and you can immediately declare that the two 

graphs are not isomorphic. However, it turns out that the graph invariant properties are the only 

necessary condition for the existence of isomorphic graphs.  

 

And we do not have an exhaustive list of graph invariant properties, we do not know that all these 

properties or you do not have a list of properties such that if those properties are preserved both in 

graph G1 and G2, then you can declare that the two graphs are isomorphic. Unfortunately, we do 

not have such graph invariant properties. So, for instance if I take these two graphs G1 and G2, 

then it is slightly difficult to identify a graph invariant property which is present in G1 but not 

present in G2.  

 

In fact the graph G1 and G2 here are not isomorphic and we have to identify here a graph invariant 

property which is present in one graph but not present in the other graph. So, if you see closely 

here, if at all graph G1 is isomorphic to graph G2, then I need to associate the vertex a of G1 with 

some vertex in G2 and that association or the vertex which could be associated with vertex a could 

be either the vertex t or the vertex u or the vertex x or the vertex y.  
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Why so? Because the degree of a here is 2, so it can be associated only with a vertex of degree 2 

in G2 and the only vertices of degree 2 in G2 are t, u, x and y. You cannot associate vertex a with 

vertex s because a has degree 2 where s has degree 3 and so on. But it turns out that in graph G2 

the vertex t, the vertex u, the vertex x, the vertex y all of them are adjacent to another vertex of 

degree 2. So, for instance; if you take t, t is adjacent to u and u has degree 2.  

 

If you take u, u is adjacent to t and t has degree 2. If you take x, x is adjacent to y which has degree 

2 and similarly y is adjacent to x which has degree 2. But if you see graph G1, all the neighbors of 

the node a have degree 3, so b has degree 3 and t has degree 3. So, that means this is now a graph 

invariant property which is present in G2 but not present in G1, the graph invariant property is that 

all the vertices of degree 2 in G2, they have a neighbour which also have degree 2.  

 

But that property is not satisfied in G1, namely I have a vertex of degree 2, namely the vertex a 

and none of its neighbours has degree 2. So, that shows that I can never find out isomorphism or 

a bijection between the vertex set of G1 and the vertex set of G2 because I cannot find a vertex 

corresponding to the vertex a in the graph G2.  

(Refer Slide Time: 27:50) 

 

Now let us next define the connectivity in a graph, so for that we first recall the definition of a path 

of length n between the node u and the node v in an undirected graph, where n is a non-negative 
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integer. So, a path of length n between the node u and the node v is a sequence of n edges in the 

graph and say 1 = (0, 1), 2 = (1, 2), ….,  = (1, ), … ,  = (1, )  such that the 

starting vertex or the first end point of the edge e1 is u and xn is equal to v. If that is the case then 

I say that I have a path of length n between the node u and the node v. So, remember there is no 

restriction on whether the edges in this sequence of n edges are distinct or they are allowed to be 

repeated or not, no such restriction is there when I consider a path of length n.  

 

A path is also called as a walk from u to v, because we are just traversing edges and going from 

the node u to node v, if the starting vertex u and the end vertex v of the path are same, then the 

path is also called as a circuit or a closed walk and if all the edges in my path between u to v are 

distinct, (1 ≠ 2 ≠ ⋯ ≠ ). That means no edges are repeated then I call the path as a simple path 

and if I have a circuit where the starting vertex and the end vertex are the same and if all the edges 

are distinct, then the circuit is called a simple circuit.  

 

By the way, in a simple path the vertices are allowed to be repeated, it is only the edges which are 

not allowed to be repeated.  

(Refer Slide Time: 29:57) 

 

So, once we have the definition of a path, let us now define what we call connected graphs and 

components, so an undirected graph is called connected if there exists a path between every pair 

of distinct vertices, I stress here between distinct vertices, I am not interested to check whether 
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there exists a path from a node to itself, but between every pair of distinct vertices there should 

exist at one path, there could be multiple paths as well but at least one path should be there between 

every pair of distinct vertices.  

 

Now what is the connected component of a graph? A connected component of a graph is the 

maximal connected subgraph of the graph. What does the maximal connected subgraph means, 

well it is a connected subgraph of the graph G and it is maximal in the sense that it cannot be 

further extended. What does that mean? What does it mean that I cannot further extend that 

connected subgraph, well that means that you cannot have another subgraph of the graph G which 

is also connected such that the connected subgraph is a proper subgraph of that connected 

subgraph.  

 

That means, it is maximal in the sense that it is not a proper subgraph of any other connected 

subgraph of the G. So, what does this mean? Imagine I take this graph, then can I call this as the 

connected component and can I call this graph as the connected component. So, if I take this 

triangle involving d, c and e, it is not a connected component because even though it is a connected 

subgraph of your graph G, it is a proper subgraph of this connected subgraph of the G, so that is 

why this is not maximally connected.  

 

So, that is why the connected component of this graph is the original graph itself, because the 

whole graph itself is connected at the first point, so if my graph G is connected at the first point 

then the only connected component of the graph will be G itself. Whereas if my graph G is 

disconnected, then the connected component will be the collection of maximal connected 

subgraphs.  

(Refer Slide Time: 32:46) 
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Now let us next define cut vertex and cut edge. So, cut vertex are also called as articulation point 

or critical vertices, what does it mean when I say a vertex is critical, so if I take this graph G, the 

node c is very critical here, because if I delete this node c then it will disconnect the entire graph. 

So, in that sense it is a critical vertex or articulation point, so my definition here is the following: 

I will say a vertex v in a graph G is a cut vertex and this cut vertex is defined with respect to a 

connected graph.  

 

So, this vertex v will be called as a cut vertex if deleting the vertex will disconnect the graph or 

equivalently the number of connected components of the graph  −  is at least one more than 

that of G, because if the number of connected components increases for the graph  − , then 

that is possible only if my graph  −  becomes disconnected. Because I started with a connected 

graph and even after deleting the vertex v, my new graph still has only one connected component 

namely it is still connected. That means the vertex v is not a cut vertex, that means deleting the 

vertex v does not disconnect the graph. Similarly, I can define a critical edge which is also called 

as a bridge or cut edge. So again, if I take the same graph as above and focus on this edge c and 

that connecting the node c and f, then the edge connecting the node c and f is very critical because 

if I delete that edge then the whole graph gets disconnected.  

 

So, that gives me the definition of a cut edge, I will say an edge is a cut edge for a connected graph 

if deleting that edge disconnects the graph which is equivalent to saying that the number of 
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connected components of the reduced graph, namely the graph obtained after removing the edge e 

is at least one more than the number of connected components of G. So, the number of connected 

components of G was 1 because it was a connected graph, but now in the new graph namely in the 

graph G - e, the number of connected components is 2 or more than 2. That means my graph got 

disconnected because of deleting the edge e and hence I will call the edge e as a critical edge or a 

bridge.  

(Refer Slide Time: 35:29) 

 

So, that brings me to the end of this lecture, these are the references. Just to summarize, in this 

lecture we discussed various set theoretic operations on the graph. We discussed the various data 

structures which we can use to represent graphs and we discussed the cut vertex and the cut edge. 

Thank you! 
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