
Chapter 8: Solution by Variation of Parameters

Introduction
In many engineering applications, especially in civil engineering, differential
equations model real-world systems such as structural deflection, fluid flow, and
heat conduction. Often, the equations encountered are non-homogeneous
linear differential equations, where the method of undetermined coefficients
may not be applicable due to the form of the non-homogeneous term. In such
cases, the method of variation of parameters becomes a powerful and general
technique to obtain a particular solution.

Unlike undetermined coefficients, which is limited to specific types of forcing
functions (right-hand side), variation of parameters can handle a wider class of
functions including logarithmic, exponential, and trigonometric terms or their
combinations.

8.1 General Form of a Non-Homogeneous Second-Order
Linear Differential Equation
A general second-order linear non-homogeneous differential equation is given by:

y′′ + p(x)y′ + q(x)y = g(x)

Where:

• y is the dependent variable (typically displacement, temperature, etc.)
• x is the independent variable (time, distance, etc.)
• p(x), q(x): Coefficient functions
• g(x): Non-homogeneous term (external input or forcing function)

The solution to this equation is given by:

y(x) = yh(x) + yp(x)

Where:

• yh(x): General solution to the homogeneous equation y′′+p(x)y′+q(x)y = 0
• yp(x): Particular solution to the non-homogeneous equation.
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8.2 Principle of the Variation of Parameters
Suppose we already have the solution to the corresponding homogeneous equation:

y′′ + p(x)y′ + q(x)y = 0

Let the two linearly independent solutions of the homogeneous part be y1(x)
and y2(x). Then the general solution of the homogeneous equation is:

yh(x) = C1y1(x) + C2y2(x)

To find a particular solution yp(x) to the non-homogeneous equation, we assume:

yp(x) = u1(x)y1(x) + u2(x)y2(x)

Here, u1(x) and u2(x) are functions to be determined.

8.3 Derivation of the Variation of Parameters Formula
Differentiate yp(x):

yp′(x) = u1′(x)y1(x) + u1(x)y1′(x) + u2′(x)y2(x) + u2(x)y2′(x)

To simplify the derivation, we impose a constraint:

u1′(x)y1(x) + u2′(x)y2(x) = 0

Then:

yp′(x) = u1(x)y1′(x) + u2(x)y2′(x)

Differentiate again:

yp′′(x) = u1′(x)y1′(x) + u1(x)y1′′(x) + u2′(x)y2′(x) + u2(x)y2′′(x)

Now substitute yp, yp′ , yp′′ into the original non-homogeneous equation:

yp′′ + p(x)yp′ + q(x)yp = g(x)

After substituting and simplifying using the homogeneous equation y1′′ +p(x)y1′ +
q(x)y1 = 0 and similarly for y2, we get:
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u1′(x)y1′(x) + u2′(x)y2′(x) = g(x)

Now we have the system:

{
u1′(x)y1(x) + u2′(x)y2(x) = 0

u1′(x)y1′(x) + u2′(x)y2′(x) = g(x)

This is a system of two linear equations in two unknowns, u1′(x) and
u2′(x). Solve using determinants (Cramer’s rule).

Let W (x) be the Wronskian of y1 and y2:

W (x) = y1(x)y2′(x) − y1′(x)y2(x)

Then:

u1′(x) = −y2(x)g(x)
W (x) , u2′(x) = y1(x)g(x)

W (x)

Now integrate both:

u1(x) = −
∫

y2(x)g(x)
W (x) dx, u2(x) =

∫
y1(x)g(x)

W (x) dx

Thus, the particular solution is:

yp(x) = −y1(x)
∫

y2(x)g(x)
W (x) dx + y2(x)

∫
y1(x)g(x)

W (x) dx

8.4 Step-by-Step Procedure
1. Solve the homogeneous equation to find two linearly independent

solutions y1(x), y2(x).

2. Compute the Wronskian W (x) = y1y2′ − y1′y2.

3. Compute u1′(x) and u2′(x) using:

u1′(x) = −y2(x)g(x)
W (x) , u2′(x) = y1(x)g(x)

W (x)
4. Integrate to find u1(x), u2(x).

5. Construct the particular solution:
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yp(x) = u1(x)y1(x) + u2(x)y2(x)

6. Write the general solution as:

y(x) = yh(x) + yp(x)

8.5 Example 1
Solve:

y′′ − y = ex

Step 1: Homogeneous equation:

y′′ − y = 0 ⇒ r2 − 1 = 0 ⇒ r = ±1

So:

y1(x) = ex, y2(x) = e−x

Step 2: Compute Wronskian:

W =
∣∣∣∣ex e−x

ex −e−x

∣∣∣∣ = −2

Step 3: Compute derivatives:

u1′ = −y2g

W
= −e−x · ex

−2 = 1
2 ⇒ u1 = x

2

u2′ = y1g

W
= ex · ex

−2 = −e2x

2 ⇒ u2 = −1
4e2x

Step 4: Particular solution:

yp = u1y1 + u2y2 = x

2 ex − 1
4e2xe−x = x

2 ex − 1
4ex

So:

y(x) = C1ex + C2e−x +
(

x

2 − 1
4

)
ex
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8.6 Remarks on Usage in Engineering
• Versatile: This method can be applied to any function g(x), unlike

undetermined coefficients.
• Computationally heavier: Requires integration which might be compli-

cated.
• Useful in Civil Engineering for modeling forced vibrations, beam

deflections under arbitrary loading, fluid flow, and non-constant
boundary conditions.

8.7 Advanced Example
Problem:

Solve the differential equation:

y′′ + y = tan x, 0 < x <
π

2

Step 1: Solve the homogeneous equation:

y′′ + y = 0 ⇒ r2 + 1 = 0 ⇒ r = ±i

So, the general solution to the homogeneous equation is:

yh(x) = C1 cos x + C2 sin x

Hence, y1(x) = cos x, y2(x) = sin x

Step 2: Compute the Wronskian:

W (x) =
∣∣∣∣ cos x sin x
− sin x cos x

∣∣∣∣ = cos2 x + sin2 x = 1

Step 3: Compute u1′(x) and u2′(x):

u1′ = −y2g

W
= − sin x · tan x = − sin2 x

cos x

u2′ = y1g

W
= cos x · tan x = sin x

1

Now integrate:

u1 = −
∫ sin2 x

cos x
dx = −

∫ (
1 − cos2 x

cos x

)
dx = −

∫
sec xdx +

∫
cos xdx
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u1 = − ln | sec x + tan x| + sin x

u2 =
∫

sin xdx = − cos x

Step 4: Construct the particular solution:

yp = u1y1 + u2y2 = (sin x − ln | sec x + tan x|) cos x − cos x · sin x

Simplify:

yp = − ln | sec x + tan x| cos x

Final solution:

y(x) = C1 cos x + C2 sin x − ln | sec x + tan x| cos x

8.8 Common Mistakes and How to Avoid Them
1. Wrong Wronskian sign or calculation:

• Always verify the Wronskian as incorrect W leads to wrong u1′ , u2′ .
• Remember: W (x) = y1y2′ − y1′y2

2. Forgetting constraints:

• When assuming yp = u1y1 + u2y2, always apply the constraint:

u1′y1 + u2′y2 = 0

• This simplifies the second derivative.

3. Difficult integrals:

• Not all integrals are elementary. Use substitution, parts, or computa-
tional tools when needed.

4. Applying undetermined coefficients instead:

• If g(x) is not a polynomial, exponential, sine, or cosine, undetermined
coefficients will not work. Use variation of parameters.
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8.9 Applications in Civil Engineering
1. Beam Deflection under Arbitrary Loads

In civil structures, especially in beam theory, the deflection y(x) of a beam is
governed by:

EI
d4y

dx4 = q(x)

Reducing this 4th-order equation step-by-step leads to a 2nd-order ODE of the
form:

y′′ + p(x)y′ + q(x)y = g(x)

Here, g(x) depends on the nature of the load q(x), such as point loads or
distributed loads.

• If g(x) is a function like ln x, tan x, etc., variation of parameters must
be used.

• Helps predict deflection of beams at any point along their span.

2. Vibration Analysis

In the presence of external forces, structural systems behave as:

my′′ + cy′ + ky = F (t)

• F (t) being arbitrary, like F (t) = ln(t), t2et, etc.
• Variation of parameters gives a general method to find the particular

solution, crucial in dynamic response analysis.

3. Hydraulic Engineering

Equations governing unsteady open channel flows or groundwater flow
may lead to non-homogeneous ODEs with coefficients dependent on spatial
variables.

8.10 Special Cases and Observations
1. If W (x) = 0:

• The chosen functions y1, y2 are not linearly independent.
• Cannot use variation of parameters unless new independent solutions

are found.

2. When the integral becomes too complex:
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• Use numerical methods or symbolic computation software (e.g., MAT-
LAB, Mathematica).

• Sometimes, solutions may be expressed in terms of integrals (closed-
form not possible).

3. When g(x) is discontinuous:

• Break the domain into intervals where g(x) is continuous and apply
the method piecewise.

• Use boundary/matching conditions at the discontinuity.

8.11 Graphical Interpretation
• The homogeneous solution represents the natural behavior of the system

(e.g., natural oscillations of a beam).
• The particular solution represents the forced response due to external

influences like loads, vibrations, or other input functions.
• In engineering practice, plotting the full solution y(x) = yh + yp reveals

insights about resonance, maximum deflection, and instability zones.
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