Design and Analysis of Algorithms, Chennai
Mathematical Institute
Prof. Madhavan Mukund
Department of Computer Science and
Engineering,

Module - 03
Lecture - 41
Greedy algorithms: Interval scheduling

Let us take another look at greedy algorithms.

(Refer Slide Time: 00:05)

Greeay Algorithms

~

* Need to make a sequence of choices to achieve a

global optimum

* At each stage, make the next choice based on
some local criterior
Nract callv reduces space to se f‘ far enli tinne
* Drastically reauces space o search 1or solutions

+ Never go back and revise an earlier decision

* How to prove that local choices achieve global

optimum?

So, we are looking at algorithms where we need to achieve a global optimum by making
a sequence of choices. So, in a greedy strategy what we do is we make the next choice
based on some local criteria. So, there maybe a number of choices we could make, but
we just pick one of them based on something which looks good at the moment and now

we never go back and revise an earlier decision.

So, we deterministically search through this space of solutions by picking of good choice
at each step and this drastically reduces the space in which we have to search. So, the
trickiest thing is that, this strategy very often does not work. So, if you have a greedy
strategy in mind, we need to go back and prove that the way we made our local choices

actually achieves the global optimum.

511

(Refer Slide Time: 00:53)

So, we have seen three algorithms so far which follow this 3D paradigm. The first was
Dijkstra’s algorithm for the single source shortest path problem. So, recall that in this
algorithm we kept burning vertices and at each stage we froze the distance to the nearest
unburnt vertex and claim that this would in fact be the shortest distance to that vertex
from the source. So, globally the optimum we achieved in this algorithm is that the
distance assigned by this greedy strategy happens to be the shortest distance from the

source.

(Refer Slide Time: 01:30)

512

A closely related algorithm is Prim’s algorithm for the minimum cost spanning tree. So,
here we incrementally build up a tree and at each stage we add to this spanning tree, the
nearest vertex that is not yet in the tree. And here the global optimum that we achieved is
that we construct the spanning tree that is minimum cost. Another algorithm for a

minimum cost spanning tree is Kruskal’s algorithm.

Here, we do not build up a tree directly, but rather we keep collecting edges and form a
connected component overall which becomes a tree. So, here we keep adding to the
current set of edges in our set, the next smallest edge that does not form a cycle with
those at we have already choose and now the global optimum is that the edges that we

collect in this way form a minimum cost spanning tree.

(Refer Slide Time: 02:31)

Interval scheduling

* CMI has a special video classroom for delivering

online lectures

+ Different teachers want to book the classroom —

ach instructor | starts at s(l) and :

finishes at f(i) ¢ :
s(i) c(')
+ Slots may overlap, so not all bookings can be

nonoured

subset of bookings to maximize the

s who get to use the room

So, now let us look at a completely different problem, a problem called interval
scheduling. So, suppose we have a special video class room, where we can deliver online
lectures. Now, different teachers want to book the class room to deliver classes and each
instructor has a slot that he would like to deliver this lecture in. So, instructor i has a slot,
let us starts at a time s i and finishes it at f i. So, you have a slot which starts at s i and

finishes at f i, now two instructors may have over lapping slot.

So, the maybe somebody who wants the slot like this, so the blue slot starts before the
red slot ends, so obviously both these slots cannot be in given bookings, because there

were interfere with each other. So, our task is to look at the set of bookings and chooses

513

subset which is feasible that is no two bookings that we choose interfere with each other.

So, there we maximize a number of teachers who get to use the room.

(Refer Slide Time: 03:40)

Interval scheaduling ...

Greedy approach

* Pick the next booking to allot based on a local

strateqy

So, broadly if we follow a greedy approach, this is what we would do. Among all the
bookings that are not yet allocated and which are still available to allocate. We will pick
one based on some local strategy, then we would remove all conflicting bookings,
bookings that overlapped with this booking that with the slot that we just allocated and
somehow we have to argue that this sequence of bookings that we are choosing

maximizes the number of teachers who get to use the room.

514

(Refer Slide Time: 04:12)

ali

QY
VY

Interva

eauling ...

Greedy strategy 1

+ Choose the booking whose start time is earliest

bookings

»{ime

So, let us look at some typical greedy strategies that one might wanted. So, one strategy
might be to choose the booking whose start time is earliest, but it is not difficult to come
up with the counter example. So, if you look at this picture, there is one long green
booking it is start earliest and in fact ends after all the other bookings are made.

So, if we use this greedy strategy we would allocate this very long booking and the entire
period it will be allocated to just one teacher, whereas if we choose the booking in start a
little later, then we could actually satisfied six teachers bookings and since our goal is to
maximize the number of teachers, who can use the room that could be a better strategy.
So, this greedy strategy is clearly flopped.

515

(Refer Slide Time: 05:00)

,“/-‘!-.\,r‘u '; ~
scneauiing ...

Interva

Greedy strategy 2
Choose the booking whose interval is shortest

+ Counterexample

And other greedy strategy we might think of is to choose a booking whose interval is
shortest. Once again here is a counter example, the interval in the middle is the shortest
one, but if we choose this it is in conflict with both the other bookings, so we have to rule
both of them optimum. So, if we choose a shortest interval then we can only allocate one
teacher to the room, whereas if we know the strategy and if we choose the too longer
intervals, then we can actually use the room for two teachers and get a better optimum

for the problem that we have chosen.

(Refer Slide Time: 05:40)

Interval scheauling ...

Greedy strategy 3

* Choose the booking that overlaps with minimum

516

So, the previous example suggest that there is something to do conflicts, so maybe we
might choose bookings in terms of how many other bookings they ruled up. So, one
strategy now we might think of is to choose the booking that overlaps with the minimum
number of other bookings. In other words, by choosing this booking we rule out as few
other bookings is possible. So, let us look at this example, here the center booking
overlaps with only two, this one and this one, every other booking overlaps with at least

three.

So, if we choose this booking, then we rule out the bookings on either side of it and that
means, there we also, we can do either this one or one of these. So, if we take this center
booking we can do at most three bookings overall, we cannot do the two in either side of
it. So, we can either do the two extreme ones or we can do anyone of these and anyone of
these. So, we can do a total of three, we can allocate a total three bookings among these.
However, if we do not do this, if we choose a better strategy, a better strategy would be
to clearly take the four on the top. So, we can allocate four teachers in this room, if we
do not use this strategy, then we must pick the one with the minimum number of
conflicts. So, this greedy strategy also fixed.

(Refer Slide Time: 07:17)

Interval scheduling ...
Greedy strategy 4

* Choose the booking that whose finish time is

earliest

¢ Counterey nle?
VOUnterexdrripit

* Proof of correctness?

So, here is a fourth strategy, instead of choosing the one like we begin with whose start

time is earliest, let us choose the one whose finished time is earliest. So, can we come up

517

with the counter example or should we instead try to prove this is correct. So, in fact this

strategy does work and let us see how we can prove it.

(Refer Slide Time: 07:41)

The algorithm
B is the set of booking
the set of accepted bookings, Initially empty
* While B is not empty
* Addbto A
* Remove from B all bookings that overlap with

Before we prove it, let us formally write down the algorithm a little more clearly. So, we
start with the set of bookings B and we want to construct from this set, a subset A of
accepted bookings. So, initially we have no accepted bookings, because we just starting
to build this set and now we do the following. So, as long as we have pending bookings
which are still feasible, we pick that booking which has the smallest finishing time
among the set which is ((Refer Time: 08:14)) and we add that to b, that to A and now
having added that to A, we cannot schedule any more bookings which overlapped with
this b.

So, we remove from our set capital B, all the bookings which overlapped with the
booking b that we just choose. So, each time we pick up the next booking which is still
available with the smallest finishing time and we remove everything which is in conflict
to it.

518

(Refer Slide Time: 08:44)

The algorithm in action

g—.(}J AL{,"Z.J/‘A’;

So, here is an example of power algorithm that work. So, here we have nine bookings,
the blue lines indicate the bookings and the numbers of the bookings are given above it.
So, in this, the one with the... So, initially our set B has all these nine bookings and our
set A is initially empty. So, now what we look at, it is a smallest finishing time among
nine bookings and that happens to be 1. So, we select 1 and then having selected 1, we

find all the bookings which overlapped with it.

So, 2 overlaps with 1 and stored at 6, so we will move 2 from our set and we will remove
6 from our set, so now B has been thrown to 3, 4, 5, 6, 7, 8, 9 and A has the booking
number 1. So, now among this feasible set 3, 4, 5, 6, 7, 8, 9 we pick the one that ends
earliest which is 3 and then since 4 is in conflict with 3, we remove 4. So, continuing in
this way we now pick 5, because 5 is earliest one to finish and then because 7 is in

conflict with 5, we remove 7.

And now we have two left, 8 and 9, but 8 finishes before 9, we could actually pick either
one, but our algorithm will pick 8, because 8 has the shortest finishing time. So, we pick
8 and then we will say that 9 is not feasible, so we do not pick it and now we have the B
isempty and A'is 1, 3, 5, 8 and since B is empty, we have no more jobs to schedule, no
more bookings to honor, so the algorithm ends. So, we have found a feasible set of four

bookings that can be accommodated with in this list.

519

(Refer Slide Time: 10:46)

Lorrectness

* Qur algorithm produces a solution A
* Let O be any optimal allocation of bookings
* Aand O need not be identical

* (Can have multiple allocations of same size

* Instead, just show that [Al = |O| — same size

So, our goal is to show that the algorithm, the solution A produce by our algorithm is
actually correct. So, suppose there is an optimal set of bookings O, now we cannot in
general assume that our solution A is identical to O, because there maybe multiple ways
of producing solutions of the same size. Remember that all we want is a solution which
allocates as many teachers as possible to rooms. So, there maybe two different ways to
allocate the same number of teachers, so we cannot argue that A and O are identical, but
it is surprises to show that A and O are of the same size. In other words, moment of what
optimal booking is produced by some other strategy, our strategy our greedy strategy

produces one which is of the same size.

520

(Refer Slide Time: 11:36)

Lorrectness

* Qur algorithm produces a solution A
* Let O be any optimal allocation of bookings
* Aand O need not be identical

* (Can have multiple allocations of same size

* Instead, just show that [Al = |O| — same size

So, let A be the set of bookings that our strategy chooses and this could be the order and
which we chooses, so i 1 is chosen first and then i 2 and so on, so when i 1 is chosen and
i 2 is still feasible and since i 1 was the earliest finishing time overall, we have that the
finishing of i 1 is before the starting time of i 2, the finishing time of i 2 is before the

starting time of i 3 and so on.

So, these bookings in A are in sorted order, now let us assume that we had an optimum
solution with m bookings j 1 to j m again in sorted order. So, j 1 ends before j 2 starts, j 2
ends before j 3 starts and so on. So, our goal is to show that k in fact is the same as it, in
other words the optimum solution is of the same size as the solution that the greedy

strategy produces.

521

(Refer Slide Time: 12:30)

\AAr
1Nead

Claim: For each r < k, f(i) < f(j)

* Our greedy solution “stays ahead” of O

Proof: By induction on 1

* r=1: our algorithm chooses booking it with

earliest overall finish time

So, we will actually show that for each job in the sequence i and j, the corresponding job
in the A sequence finishes no later than the corresponding job in the O sequence. So, for
every r up to k, f of i r is earlier than or equal to f of j r. So, in this sense we are trying to
argue that the greedy solution stays ahead of any optimum solution, we may produce by

any other method.

So, the proof of this claim is by induction on r. So, when we look at the first job i 1, we
know that i 1 is overall the earliest finish time among all the jobs, all the bookings in our
list, since i 1 has the earliest finish time over all the bookings, it must definitely be less

than or equal to f of j 1, because j 1 cannot be smaller than the overall finish time.

522

(Refer Slide Time: 13:30)

Greedy a

aneac

ocation stays

J

1: Assume, by induction that f(i.1) < f(-1
* Then, it must be the case that

* |f not, algorithm would choose | rather thani

Now, let us assume that we have establish by induction that up to r minus 1, the booking
i minus i of r minus 1 has a finish time which is earlier than booking j of r minus 1. Then,
we claim it must be the case that i r finishes before j r, because if we did not have this
then we would have the picture as below. So, we have that i r minus 1 finishes before j r

minus 1.

Now, suppose we claim that j r actually ends before i r, then our algorithm would at this
stage find the j r is still feasible, because it does not overlap with i r minus 1 and among
the jobs which remain j r has an earliest finishing time than i r. So, our greedy strategy
would pick j r rather than i r, so therefore the fact that we have picked i r and not j r
means that we cannot have a picture like this. It cannot be that i r ends strictly after j r, it

must end before or at the same time as j r end.

523

(Refer Slide Time: 14:37)

Greedy allocation is optimal

* Suppose m >k - ... -L)l /g,:* QS

Jk “\. Jen /" j"‘"

+ Greedy algorithm terminates when B is empty

Qinro fl ¢ \ “Hta Ranbina ia Anrmnatihl 2
¢ Since f(ik) < (k) < Slk«1), tiS DOOKING IS Ct mpatible

with A=y, 2, ..., |

+ After selecting iy, B still contains ji,1. Contradiction!

So, now having shown that the greedy strategy always stays ahead, we will now claim
that actually our solution must be optimum. So, suppose that m is actually strictly greater
than Kk, then we know that when we reach i k, it is before j k. Now, because we have a
solution which is longer than k, there is another job after this called j k plus 1, assuming
that m is strictly, because this goes up to job booking j m. So, since this happens there

must be a sequence of job, sequence of bookings after j k, so let us look at the sequence.

Now, the claim is that this particular booking at this point is not ruled out by anything
that is happened before, so if we look at i 1 up to i k, none of these overlap with j k plus
1, because j k plus 1 is after j k. So, i k finishes before j k and j k finishes before j k plus
1 starts. Therefore, i k is compatible with j k plus 1, this means at this stage B is not

empty.

When we have to finish in our greedy algorithm processing i 1 to i k these not empty, but
we claim that we start with i k and the only reason our greedy algorithm will stops is
because B is empty. So, if there is a job or a booking j k plus 1, then it cannot be that our
algorithm stopped at this point, so there is a contradiction. So, therefore we cannot have
any bookings in the optimum solution which go beyond k and therefore, m must be equal
to k.

524

(Refer Slide Time: 16:24)

N\ 7181 4
J/\/\I \,\\‘,‘

Implementation, comple

* |nitially, sort the n bookinas by finish time
O(n log n)
Kings are renumbered 1,2,...,n in this order
* Set up an array ST[1..n] so that ST[i] = s(i)
« Start with booking 1
* After choosing booking |, scan ST(j+1], ST[j+2],
1d choose first k such that STK] > f()
* Second phase is O(n), so O(n log n) overall

So, having shown that it is correct, let us just quickly look at how we would implement
this and estimate the upper bound of the complexity. So, initially we sort the m bookings
by finishing time, this takes time n log n for n bookings and now let us assume if the
bookings are renumbered 1, 2 up to n in this sorted order. So, booking 1 has an earliest

finishing time, booking 2 has a second earliest finishing time and so on.

Now, we set up in one order n scan, an array ST such that ST of i contains the starting
time of booking array. Now, we start with booking 1 and each time we choose a booking
J, we start from j plus 1 and keeps scanning the start time of bookings till we find the
earliest k whose starting time is beyond f of j. In other words, we are looking... So, so

we know that these bookings are in order of finishing time.

So, we know that after j the booking that ends next is j plus 1, but if it is starting time is
not beyond the finishing time of j, it is overlapping, so it cannot be compatible. So, we
just scan this array ST until we find the smallest k which actually starts after f j ends. So,
in this way one order n scan we can go through all our bookings and pick up a greedy
optimum set. So, this is an order n scan sorting takes order n log in, so overall this greedy

strategy is correct and it takes time O n log n.

525

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

