
Chapter 26: Advanced Data Structures (e.g., Trees, 

Graphs) 

 

Introduction 

As programs grow in complexity and deal with large-scale data, basic structures like arrays and 
linked lists become insufficient for efficient data manipulation and storage. Advanced data 

structures such as trees, heaps, tries, and graphs enable optimal solutions for complex 

problems including parsing expressions, route finding, database indexing, compiler construction, 
and much more. 

This chapter explores these structures in depth—how they are designed, how they work, and how 
they are implemented in real-world systems. You will also learn about the time and space 
complexity of various operations on these structures and see code-level examples and 

algorithmic applications. 

 

26.1 Trees 

26.1.1 Overview of Trees 

A tree is a hierarchical data structure with a root node and sub-nodes (children), where each 
node (except the root) has exactly one parent. It is an abstract model of hierarchical structures. 

Key Terms: 

• Root: Topmost node. 

• Leaf: Node with no children. 

• Internal Node: Node with at least one child. 

• Depth: Length of the path from root to the node. 

• Height: Longest path from the node to a leaf. 

26.1.2 Binary Trees 

A binary tree is a tree in which each node has at most two children, typically called left and 
right. 

Traversal Methods: 

• In-order (LNR): Left → Node → Right 

• Pre-order (NLR): Node → Left → Right 

• Post-order (LRN): Left → Right → Node 

• Level-order: Breadth-first traversal using a queue. 



26.1.3 Binary Search Trees (BSTs) 

A Binary Search Tree maintains a sorted structure: 

• Left subtree contains nodes with values less than the parent node. 

• Right subtree contains nodes with values greater than the parent node. 

Operations: 

• Insert: O(log n) average 

• Search: O(log n) average 

• Delete: O(log n) average (Worst-case for unbalanced trees: O(n)) 

26.1.4 Balanced Trees 

AVL Tree (Adelson-Velsky and Landis) 

• A self-balancing BST. 

• Balance factor (height left - height right) must be in [-1, 0, 1]. 

Red-Black Tree 

• A binary tree with nodes marked red or black. 

• Ensures O(log n) time for insertion, deletion, and lookup. 

26.1.5 Heaps 

A heap is a complete binary tree used to implement priority queues. 

• Min-Heap: Parent ≤ children 

• Max-Heap: Parent ≥ children 

Operations: 

• Insert: O(log n) 

• Extract-Min/Max: O(log n) 

• Build-Heap: O(n) 

Used in Heap Sort and Dijkstra’s algorithm. 

26.1.6 Tries (Prefix Trees) 

• A tree-based data structure for storing strings, used especially for autocomplete and spell 

checking. 

• Each node represents a character of the string. 

• Fast lookup: O(length of word) 

 

26.2 Graphs 

26.2.1 Introduction to Graphs 

A graph is a non-linear data structure consisting of vertices (nodes) and edges (connections). It 
can be: 



• Directed or Undirected 

• Weighted or Unweighted 

• Cyclic or Acyclic 

26.2.2 Representation of Graphs 

1. Adjacency Matrix: 

o 2D array: matrix[i][j] = 1 if edge exists. 

o Space: O(V²) 

2. Adjacency List: 

o Each vertex stores a list of adjacent vertices. 

o Space: O(V + E) 

26.2.3 Graph Traversal 

Breadth-First Search (BFS): 

• Uses a queue. 

• Explores neighbors level by level. 

• Time: O(V + E) 

Depth-First Search (DFS): 

• Uses a stack or recursion. 

• Explores one branch deeply before backtracking. 

• Time: O(V + E) 

26.2.4 Applications of Graphs 

• Shortest Path (Dijkstra, Bellman-Ford) 

• Cycle Detection 

• Topological Sorting (for DAGs) 

• Minimum Spanning Tree (Kruskal’s, Prim’s) 

• Network Flow (Ford-Fulkerson) 

26.2.5 Dijkstra's Algorithm (Shortest Path) 

Used in weighted graphs (non-negative edges) to find the shortest path from a source to all 
vertices. 

• Time: O((V + E) log V) with Min-Heap 

26.2.6 Minimum Spanning Tree 

Prim’s Algorithm 

• Starts from any node, adds the cheapest edge to the growing MST. 

• Uses priority queue. 

Kruskal’s Algorithm 

• Sorts all edges and adds the smallest edge that doesn’t form a cycle. 



• Uses Union-Find. 

 

26.3 Comparative Analysis of Data Structures 

Structure Use Case Avg. Time Complexity Space 

Binary Search Tree Sorted data, fast lookup O(log n) O(n) 

AVL / Red-Black Tree Self-balancing trees O(log n) O(n) 

Heap Priority queue, scheduling O(log n) O(n) 

Trie String search, autocomplete O(k), k = word length High 

Graph (Adj List) Real-world networks O(V + E) traversal O(V + E) 

 

26.4 Real-World Applications 

• Trees: Compilers (parse trees), AI (decision trees), File systems. 

• Heaps: Task scheduling, bandwidth management, event-driven simulators. 

• Tries: Search engines, IP routing, dictionary implementations. 

• Graphs: Social networks, navigation systems, recommendation systems. 

 

Summary 

Advanced data structures like trees and graphs empower developers to solve non-trivial problems 
with optimal time and space efficiency. Mastery of these structures, along with their algorithms 

and use cases, is essential for tackling complex software challenges in fields ranging from 
databases and networking to machine learning and artificial intelligence. 

By understanding and applying trees, heaps, tries, and graphs, you unlock the ability to architect 
systems that are not only functional but scalable, efficient, and intelligent. 

 


