
Chapter 4: Case of Complex Roots
Introduction

In civil engineering, many systems and structures exhibit dynamic behavior—such
as buildings swaying during earthquakes or bridges vibrating due to traffic.
These behaviors are often modeled using second-order linear differential
equations. When solving these, the nature of the characteristic equation's
roots determines the form of the general solution. One particularly interesting
and important case arises when the roots are complex conjugates. This
chapter explores this scenario in depth, explaining the mathematical theory and
its civil engineering applications.

4.1 General Form of Second-Order Linear Differential Equations

A homogeneous second-order linear differential equation with constant
coefficients is of the form:

a
d2y

dx2 + b
dy

dx
+ cy = 0

Where:

• a, b, c ∈ R and a ̸= 0
• y = y(x) is the unknown function

We solve such equations using the characteristic (auxiliary) equation:

ar2 + br + c = 0

This is a quadratic equation. Its nature depends on the discriminant D = b2−4ac.

4.2 Case of Complex Roots (When D < 0)

When D = b2 − 4ac < 0, the quadratic equation has complex conjugate roots:

r = α ± iβ

Where:

• α = − b
2a (real part)

• β =
√

4ac−b2

2a (imaginary part)
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Thus, the general solution to the differential equation becomes:

y(x) = eαx(C1 cos βx + C2 sin βx)

Where C1 and C2 are arbitrary constants determined by initial or boundary
conditions.

4.3 Derivation of the Solution

Let us derive this result step-by-step:

Given roots: r = α ± iβ

So,

y(x) = C1e(α+iβ)x + C2e(α−iβ)x

Using Euler’s formula:

eiβx = cos βx + i sin βx

This gives:

y(x) = eαx [C1(cos βx + i sin βx) + C2(cos βx − i sin βx)]

Grouping terms and setting new constants A, B ∈ R, we rewrite:

y(x) = eαx(A cos βx + B sin βx)

This is the required real-valued solution.

4.4 Interpretation of the Solution

The solution y(x) = eαx(A cos βx + B sin βx) represents a damped oscillation:

• The exponential factor eαx (where α < 0) causes the amplitude to decay
over time.

• The sine and cosine terms describe an oscillatory behavior with frequency
β.
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In Civil Engineering:

• α relates to the damping effect in materials (energy loss due to internal
friction or resistance).

• β relates to the natural frequency of vibration of structures.

This has real-world importance when analyzing how structures respond to
periodic forces (like wind or earthquakes).

4.5 Example Problems

Example 1: Solve:

d2y

dx2 + 4 dy

dx
+ 13y = 0

Solution:

Characteristic equation:

r2 + 4r + 13 = 0 ⇒ r = −4 ±
√

16 − 52
2 = −2 ± 3i

So the general solution is:

y(x) = e−2x(C1 cos 3x + C2 sin 3x)

Example 2 (Application in Civil Engineering): A building undergoes a
damped vibration modeled by:

m
d2y

dt2 + c
dy

dt
+ ky = 0

With:

• Mass m = 1
• Damping coefficient c = 2
• Stiffness k = 5

Then:

d2y

dt2 + 2dy

dt
+ 5y = 0 ⇒ r = −1 ± 2i ⇒ y(t) = e−t(C1 cos 2t + C2 sin 2t)
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This tells us the building vibrates at a frequency of 2 rad/s with exponential
decay due to damping.

4.6 Engineering Insight: Stability of Structures

In structural dynamics:

• Stable System: If α < 0, vibrations die out — structure is safe.
• Unstable System: If α > 0, oscillations grow — potential collapse.

Designing damping systems (like shock absorbers, tuned mass dampers) is
essential to control this behavior.

4.7 Real-World Applications in Civil Engineering

1. Earthquake Engineering During an earthquake, buildings experience
sudden ground motion, which causes vibrations in the structure. These are
typically modeled by second-order differential equations. Complex roots indicate
oscillatory motion, and their damping rate determines how long the shaking
will persist.

Example: A 10-storey RC frame building experiences damped
vibrations after an earthquake shock. Engineers analyze the system
with damping to ensure vibrations subside within a safety window.
The nature of the roots of the characteristic equation helps predict
whether the building will remain stable.

2. Design of Suspended Bridges Suspension bridges like the Golden Gate
Bridge must withstand wind-induced oscillations. These oscillations can become
destructive (resonance) if damping is not properly designed.

• The governing differential equation often yields complex roots.
• Engineers design aerodynamic dampers based on the values of α and β.

3. Tall Buildings and Wind Loads Tall skyscrapers sway due to wind
pressure. If the sway follows a second-order differential model and yields complex
roots, it indicates periodic motion with decreasing amplitude (if α < 0).

• Structures like Burj Khalifa use tuned mass dampers to shift natural
frequencies and control β, reducing perceived motion.

4.8 Graphical Representation and Physical Meaning

1. Phase Plot of Damped Oscillations For a solution:
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y(t) = eαt(C1 cos βt + C2 sin βt)

The displacement y(t) vs time t plot shows a sinusoidal wave with decreasing
amplitude over time — this is known as exponentially decaying oscillation.

2. Envelope Curve The exponential term eαt creates an envelope over the
oscillating waveform, indicating how the amplitude diminishes with time.

Graphical components:

• Outer envelope: ±eαt

• Inner oscillation: sinusoidal component with frequency β

Graphical illustration should be included here in your e-book using
a plotted graph or simulation showing an oscillating wave with a
damping envelope.

4.9 Damping Ratio and Natural Frequency

Damping Ratio ζ

ζ = c

2
√

mk

• If ζ < 1, the system is underdamped and exhibits oscillatory motion
(complex roots).

• The general solution:

y(t) = e−ζωnt(C1 cos ωdt + C2 sin ωdt)

Where:

• ωn =
√

k
m = Natural frequency

• ωd = ωn

√
1 − ζ2 = Damped frequency

Civil Engineering Example: For a damped floor slab system:

• m = 500 kg
• c = 100 Ns/m
• k = 20000 N/m

We calculate:

• ωn = 6.32 rad/s
• ζ = 0.354 (underdamped)
• ωd = 5.9 rad/s
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This gives insight into how quickly and smoothly the floor returns to equilibrium
after a disturbance.

4.10 Numerical Methods: Simulating Complex Root Behavior

When analytical solutions are difficult, civil engineers use numerical integra-
tion methods like:

• Runge-Kutta (RK4)
• Euler’s Method
• Finite Difference Method

Example: Using RK4 in MATLAB or Python to simulate:

d2y

dt2 + 6dy

dt
+ 25y = 0

• Converts into a system of first-order ODEs
• Simulates real-time vibration damping in beams or building elements
• Useful in real-time health monitoring systems of structures

4.11 Experimental Validation and Structural Monitoring

Modern civil engineering incorporates sensor-based structural health moni-
toring (SHM).

• Accelerometers collect real-time displacement data.
• The measured vibration data is analyzed and modeled using second-order

differential equations.
• The nature of the system's response (complex roots or not) helps identify

if a structure is damaged or behaving abnormally.

Example:

A sensor on a bridge deck records a vibration signal that shows a
sinusoidal waveform decaying over time. This confirms a complex
root behavior — suggesting the structure is still performing within
elastic limits.

4.12 Summary of the Chapter
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Concept Explanation

Differential Equation a d2y
dx2 + b dy

dx + cy = 0
Discriminant D If D < 0, roots are complex conjugates
General Solution y = eαx(C1 cos βx + C2 sin βx)
Application Damped vibrations in structures
Engineering Insight Helps predict stability and response of

civil systems

Exercises

Q1. Solve the equation d2y
dx2 + 6 dy

dx + 10y = 0

Q2. A structure vibrates with equation d2y
dt2 + 4 dy

dt + 13y = 0. Plot the solution
and identify the damping characteristics.

Q3. A spring-mass-damper system has m = 2 kg, c = 4 Ns/m, k = 50 N/m.
Calculate ζ, ωn, ωd and classify the response.

Q4. Explain the significance of damping ratio ζ in the design of a tall structure.

4.7 Key Takeaways

• Complex roots occur when b2 − 4ac < 0 in the characteristic equation.
• The solution is a product of an exponential decay and a sinusoidal function.
• This models damped oscillatory motion, fundamental in structural

analysis.
• Understanding this case helps civil engineers predict and mitigate

structural responses to dynamic loads.

Conclusion

The case of complex roots in second-order differential equations is central to
analyzing and controlling dynamical systems in civil engineering. Whether
it's ensuring a bridge can withstand traffic-induced vibrations or designing
earthquake-resistant buildings, mastering this topic equips engineers with essen-
tial tools for structural safety and innovation.
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