
Chapter 26: Vector Spaces

Introduction
Vector spaces form the foundational framework of linear algebra and are vital in 
various areas of Civil Engineering, such as structural analysis, finite element 
methods, surveying, and hydraulics. Understanding vector spaces allows 
engineers to generalize geometric and algebraic operations to higher dimensions, 
making complex problems more manageable through abstraction and linear 
representation. This chapter explores the theory of vector spaces with rigor and 
depth to help Civil Engineering students build strong mathematical reasoning 
applicable to real-world problems.

26.1 Definition of a Vector Space
A vector space (also called a linear space) over a field  (usually ℝ or ℂ) is a non-𝔽
empty set V equipped with two operations:

1. Vector Addition: A rule that assigns to each pair of vectors u, v  V a vector ∈
u + v  V.∈

2. Scalar Multiplication: A rule that assigns to each scalar a   and each ∈ 𝔽
vector v  V a vector ∈ a·v  V.∈

These operations must satisfy the following axioms for all u, v, w  V and ∈ a, b  :∈ 𝔽

Axioms of Vector Space:
1. Closure under addition: u + v  V∈

2. Commutativity of addition: u + v = v + u
3. Associativity of addition: (u + v) + w = u + (v + w)
4. Existence of additive identity: There exists 0  V such that v + 0 = v∈

5. Existence of additive inverse: For every v  V, there exists (−v)  V such ∈ ∈
that v + (−v) = 0

6. Closure under scalar multiplication: a·v  V∈

7. Distributivity over vector addition: a·(u + v) = a·u + a·v
8. Distributivity over scalar addition: (a + b)·v = a·v + b·v



9. Associativity of scalar multiplication: a·(b·v) = (a·b)·v
10.Identity scalar multiplication: 1·v = v, where 1 is the multiplicative identity 

in 𝔽

26.2 Examples of Vector Spaces
1. ℝⁿ (Euclidean Space): The set of all n-tuples of real numbers, V = ℝⁿ = {(x₁, 

x₂, ..., xₙ) | xᵢ  ℝ}, with usual addition and scalar multiplication.∈

2. Set of Polynomials: Pₙ = set of all polynomials of degree  n with real ≤
coefficients.

3. Matrix Space: The set of all m×n real matrices: Mₘₓₙ(ℝ) is a vector space 
over ℝ.

4. Function Space: The set of all real-valued continuous functions defined on 
an interval [a, b].

5. Zero Vector Space: The set {0} is a trivial vector space.

26.3 Subspaces
A subspace W of a vector space V is a subset of V that is itself a vector space under 
the same operations.

Conditions for W  V to be a Subspace:⊆

 Zero vector inclusion: 0  W∈

 Closed under addition: If u, v  W, then u + v  W∈ ∈

 Closed under scalar multiplication: If a   and v  W, then a·v  W∈ 𝔽 ∈ ∈

Examples:
 The set of vectors on a line through the origin in ℝ³
 The set of symmetric matrices in Mₙₓₙ
 The set of all even functions in the space of continuous functions

26.4 Linear Combination and Span
 A linear combination of vectors v₁, v₂, ..., vₖ  V is any vector of the form ∈

a₁v₁ + a₂v₂ + ... + aₖvₖ, where aᵢ  .∈ 𝔽



 The span of a set S = {v₁, v₂, ..., vₖ}  V is the set of all linear combinations of ⊆
vectors in S. Span(S) = {  aᵢvᵢ | aᵢ  }∑ ∈ 𝔽

 Span(S) is always a subspace of V.

26.5 Linear Independence and Dependence
 A set {v₁, v₂, ..., vₖ} is said to be linearly independent if a₁v₁ + a₂v₂ + ... + aₖvₖ 

= 0 implies all aᵢ = 0.

 Otherwise, the set is linearly dependent.

 Implication: In a dependent set, at least one vector can be expressed as a 
linear combination of the others.

26.6 Basis and Dimension
 A basis of a vector space V is a linearly independent set of vectors that spans 

V.

 The dimension of V, denoted dim(V), is the number of vectors in any basis of 
V.

Examples:
 Standard basis for ℝ³: {(1,0,0), (0,1,0), (0,0,1)}
 The dimension of ℝⁿ is n.
 The zero vector space has dimension 0.

26.7 Row Space, Column Space, and Null Space
Let A be an m×n matrix over ℝ.

 Row Space: The vector space spanned by the row vectors of A
 Column Space: The vector space spanned by the column vectors of A
 Null Space: The set of all solutions x to Ax = 0

These are fundamental in solving systems of linear equations.



26.8 Rank and Nullity
 Rank of A = dimension of column space (or row space)
 Nullity of A = dimension of null space

By the Rank–Nullity Theorem: If A is an m×n matrix, then rank(A) + nullity(A) = n

26.9 Vector Space Isomorphism
Two vector spaces V and W are isomorphic if there exists a bijective linear 
transformation T: V  W that preserves vector addition and scalar multiplication.→

If dim(V) = dim(W), then V  W.≅

26.10 Application in Civil Engineering
Vector space concepts are used in:

 Structural analysis: Modeling forces as vectors and solving equilibrium 
equations

 Finite Element Method (FEM): Discretization of continuous systems into 
vector spaces

 Surveying: Coordinate transformations and vector calculations
 Hydraulics and Fluid Mechanics: Representing velocity fields and stress 

tensors
 CAD and Design: Coordinate geometry and transformations using vector 

operations

Understanding the linear structure of these problems makes computation efficient 
and enables the use of matrix algebra software tools.

26.11 Linear Transformations
A linear transformation (or linear map) between two vector spaces V and W over 
the same field  is a function 𝔽 T: V  W→  such that for all u, v  V∈  and a  ∈ 𝔽:

 T(u + v) = T(u) + T(v)
 T(a·v) = a·T(v)



Important Properties:
 A linear transformation maps the zero vector in V to the zero vector in W: 

T(0) = 0
 The image of a linear transformation is a subspace of W.
 The kernel (null space) of a linear transformation is a subspace of V.

Matrix Representation:

If V and W are finite-dimensional with bases, any linear transformation T can be 
represented by a matrix A, such that T(x) = A·x

This is particularly useful in Civil Engineering for transforming coordinate systems, 
stress-strain relations, and more.

26.12 Inner Product Spaces
An inner product space is a vector space V along with an inner product ·,· : V × V ⟨ ⟩

 ℝ that satisfies:→

1. Conjugate symmetry: u, v  = v, u⟨ ⟩ ⟨ ⟩

2. Linearity in the first argument: au + bv, w  = a u, w  + b v, w⟨ ⟩ ⟨ ⟩ ⟨ ⟩

3. Positive-definiteness: v, v   0 with equality iff v = 0⟨ ⟩ ≥

Example (Euclidean Inner Product):

For u = (u₁, u₂, ..., uₙ), v = (v₁, v₂, ..., vₙ), u, v  =  uᵢvᵢ⟨ ⟩ ∑

Applications:
 Used in measuring angles and lengths
 Critical in defining orthogonality and orthonormality
 In structural analysis, inner products can help determine orthogonal force 

systems.

26.13 Orthogonality and Orthonormal Sets
Two vectors u and v are said to be orthogonal if u, v  = 0. A set of vectors {v₁, ⟨ ⟩
v₂, ..., vₙ} is orthonormal if:

 vᵢ, vⱼ  = 0 for i =V j (orthogonal)⟨ ⟩



 vᵢ, vᵢ  = 1 for all i (unit vectors)⟨ ⟩

Gram-Schmidt Orthonormalization Process:

A method for converting a linearly independent set of vectors into an orthonormal 
set while spanning the same subspace. This is important in numerical methods, 
finite element modeling, and solving least squares problems.

26.14 Coordinate Systems and Change of Basis
Given a basis B = {b₁, b₂, ..., bₙ} for V, every vector v  V can be uniquely ∈
represented as: v = a₁b₁ + a₂b₂ + ... + aₙbₙ

The scalars a₁, ..., aₙ are the coordinates of v relative to B.

Change of Basis:

If a vector has coordinates [v]_B in basis B and [v]_C in basis C, then [v]_C = P⁻¹·[v]_B 
Where P is the matrix whose columns are the coordinates of B in terms of C.

This has significant applications in Civil Engineering, such as:

 Changing reference frames in structural analysis
 Interpreting results from global to local element coordinates in FEM

26.15 Quotient Spaces
Let W be a subspace of V. The quotient space V/W is the set of all cosets: v + W = 
{v + w | w  W}∈

This concept helps simplify complex vector spaces by “modding out” a subspace, 
making it useful in theoretical mechanics and optimization.

26.16 Dual Spaces
The dual space V* of a vector space V is the set of all linear functionals from V to .𝔽

A linear functional is a map f: V   such that: f(a·u + b·v) = a·f(u) + b·f(v)→ 𝔽



Significance in Engineering:
 Appears in variational principles, e.g., virtual work in mechanics
 Used in stress-strain energy representation

26.17 Direct Sums and Decomposition
A vector space V can be expressed as the direct sum of two subspaces U and W if:

 V = U  W⊕

 Every v  V can be uniquely written as v = u + w, where u  U, w  W∈ ∈ ∈

 U  W = {0}∩

This decomposition is useful in splitting problems into smaller, manageable 
independent components—important in solving systems of equations in FEM or 
dynamics.

26.18 Vector Spaces over ℂ
While most civil engineering problems work over ℝ, complex vector spaces arise 
in:

 Vibrational analysis (using complex exponentials)
 Electrical analog modeling of mechanical systems

The theory remains similar but includes complex conjugation in inner product 
definitions.

26.19 Infinite-Dimensional Vector Spaces
Spaces like the set of all polynomials, functions, or sequences are infinite-
dimensional.

Applications include:

 Fourier Series and Transforms in analyzing vibrations and wave 
propagation

 Functional Analysis in continuum mechanics and differential equations



26.20 Computational Tools and Vector Spaces
Software such as MATLAB, ANSYS, and OpenSees implement vector space 
concepts for:

 Matrix decomposition
 Solving large-scale systems (e.g., in FEM)
 Eigenvalue analysis for stability and dynamic behavior
 Transformation and interpolation of geometric data in CAD models

Engineers must understand the underlying vector space principles to interpret and 
validate these tools’ output.
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