
Chapter 13: File Handling

Introduction

In modern software development, interacting with files is essential for tasks like data persistence,

logging, configuration management, and data interchange. File Handling in programming refers

to the process of creating, reading, writing, and manipulating files stored on disk using

programming constructs. This chapter delves into advanced file handling techniques, beyond the

basics, focusing on robust practices, performance optimization, error handling, and working with

different file formats in C++, Java, and Python—languages often used in BTech CSE curricula.

13.1 File Basics

13.1.1 What is a File?

A file is a named location on disk that stores data persistently. It can contain data in different

formats such as plain text, binary, CSV, JSON, XML, etc.

13.1.2 Types of Files

• Text Files: Contain human-readable characters.

• Binary Files: Store data in binary format (non-readable by humans).

13.2 File Operations

13.2.1 Common Operations

• Create: Make a new file.

• Open: Access an existing file.

• Read: Extract data from a file.

• Write: Insert data into a file.

• Append: Add data at the end.

• Close: Free resources used for file access.

13.2.2 File Modes

Mode Description

r Read-only

w Write (overwrites existing)

a Append

rb Read binary

Mode Description

wb Write binary

r+ Read and write (no overwrite)

w+ Read and write (overwrite)

13.3 File Handling in C++

13.3.1 fstream Library

#include <fstream>
using namespace std;

13.3.2 Reading and Writing

ofstream fout("data.txt");
fout << "Hello File!";
fout.close();

ifstream fin("data.txt");
string line;
getline(fin, line);
cout << line;
fin.close();

13.3.3 File Pointers

• seekg() / seekp() – Set position for reading/writing

• tellg() / tellp() – Get current position

13.4 File Handling in Java

13.4.1 FileReader and FileWriter

import java.io.*;

FileWriter fw = new FileWriter("output.txt");
fw.write("Hello Java File!");
fw.close();

FileReader fr = new FileReader("output.txt");
int i;
while ((i = fr.read()) != -1)
 System.out.print((char)i);
fr.close();

13.4.2 BufferedReader and BufferedWriter

Efficient for large text files.

BufferedReader br = new BufferedReader(new FileReader("file.txt"));
BufferedWriter bw = new BufferedWriter(new FileWriter("file.txt"));

13.4.3 File Class

Used for file metadata and manipulation.

File f = new File("data.txt");
System.out.println(f.exists());

13.5 File Handling in Python

13.5.1 Opening and Reading

f = open("data.txt", "r")
content = f.read()
print(content)
f.close()

13.5.2 Writing to a File

with open("data.txt", "w") as f:
 f.write("Hello Python File!")

13.5.3 File Context Manager

Python uses with to automatically close files.

13.6 Working with Binary Files

13.6.1 C++ Example

ofstream fout("data.bin", ios::binary);
int x = 100;
fout.write((char*)&x, sizeof(x));
fout.close();

13.6.2 Python Example

with open("data.bin", "wb") as f:
 f.write(b'\x64') # 100 in hex

13.7 Error and Exception Handling

13.7.1 C++

Use fail() or bad() methods on file streams:

if (fin.fail()) {
 cerr << "Error opening file.";
}

13.7.2 Java

Use try-catch blocks.

try {
 FileReader fr = new FileReader("file.txt");
} catch (IOException e) {
 e.printStackTrace();
}

13.7.3 Python

try:
 f = open("file.txt", "r")
except FileNotFoundError:
 print("File not found.")

13.8 Advanced Topics

13.8.1 File Locking

To prevent race conditions when multiple programs access the same file.

• Java: FileChannel.lock()

• Python: fcntl or msvcrt module

13.8.2 Random Access Files

• C++: seekg(), seekp()

• Java: RandomAccessFile

• Python: seek() and tell()

13.9 Working with Different File Formats

13.9.1 CSV Files

• Python: csv module

• Java: OpenCSV

• C++: Manual parsing

13.9.2 JSON Files

• Python: json module

• Java: Gson or Jackson

• C++: nlohmann/json library

13.9.3 XML Files

• Python: xml.etree.ElementTree

• Java: DOM/SAX parser

13.10 Best Practices in File Handling
• Always close files after use.

• Use context managers where possible.

• Handle exceptions robustly.

• Validate file paths and names.

• Avoid hardcoded paths – use dynamic or relative paths.

• Use buffers for large file operations.

• Avoid race conditions in multi-threaded environments.

Summary

This chapter explored the depths of file handling, covering not only basic I/O operations but also

advanced practices such as file locking, working with structured formats like JSON/XML, and

random access techniques. Mastery of file handling empowers developers to build applications

with robust data storage, logging, and configuration capabilities—key requirements in real-world

programming.

	Chapter 13: File Handling
	Introduction
	13.1 File Basics
	13.1.1 What is a File?
	13.1.2 Types of Files

	13.2 File Operations
	13.2.1 Common Operations
	13.2.2 File Modes

	13.3 File Handling in C++
	13.3.1 fstream Library
	13.3.2 Reading and Writing
	13.3.3 File Pointers

	13.4 File Handling in Java
	13.4.1 FileReader and FileWriter
	13.4.2 BufferedReader and BufferedWriter
	13.4.3 File Class

	13.5 File Handling in Python
	13.5.1 Opening and Reading
	13.5.2 Writing to a File
	13.5.3 File Context Manager

	13.6 Working with Binary Files
	13.6.1 C++ Example
	13.6.2 Python Example

	13.7 Error and Exception Handling
	13.7.1 C++
	13.7.2 Java
	13.7.3 Python

	13.8 Advanced Topics
	13.8.1 File Locking
	13.8.2 Random Access Files

	13.9 Working with Different File Formats
	13.9.1 CSV Files
	13.9.2 JSON Files
	13.9.3 XML Files

	13.10 Best Practices in File Handling
	Summary

