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Edit Distance 

Having looked at the longest common subword and subsequence problem, we now look 

at a closely related problem called Edit Distance. 

(Refer Slide Time: 00:09) 

So, the aim is to measure how similar two pieces of texture, it is so called document 

similarity problem. So, let us look at the following two sentences; the first sentence says 

the students who were able to appreciate the concept optimal substructure property and 

its use in designing algorithms. The second sentence says the lecture taught the students 

to appreciate how the concept of optimal substructures can be used in designing 

algorithms. So, the third sentence here indicates how one might obtain one of these two 

from the other. 

If you have used certain document preparation systems which allow you to track 

changes, it will typically indicate the changes between one version of a document and 

other version like this. So, here the green indicates letters which have been, so if we 

called as version 1 and this version 2, then in going from version one1 to version 2, what 

we have done is you are introduced the letters in green. So, you have inserted these 
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characters, you have deleted the letters marked in red with a line through them and in this 

yellow we have replace. So, we have replaced the t by v and an s by n. So, we have 28 

characters, we can count that there are 28 characters which have been inserted including 

spaces and other, 18 characters have been deleted and 2 characters have been substituted. 

(Refer Slide Time: 01:41) 

 

So, now, this can be a basis of measuring how close two documents are close to each 

other. So, the edit distance with the minimum number of edit operations required to 

transform one document to another, so we have to define what we mean by editing 

operations. So, let us just start with very basic operation, either you can insert a character 

or you can delete a character or you can replace one character by another one in one step. 

So, replacing of course could be a think taught of us deleting and inserting, so that could 

be a two step operations, I delete the character and then I insert the character I want. But, 

I am going to allow changing one letter a by b or s by t as a single operation. So, in our 

example we claimed that 28 characters were inserted, 18 were deleted and 2 were 

substituted. So, the total number of changes we made is 48. 

If the edit distance is suppose be the minimum number of changes, it cannot be more 

then 48, because they already shown that it is possible to do in 48 characters, possible to 

do it in more clever way less than 48. So, the edit distance is at most 48 for the two 

sentence that we shown earlier. 
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(Refer Slide Time: 02:44) 

 

So, this distance is also called the Levenshtein distance, because it was first proposed by 

the Soviet, now Russian scientist called Vladimir Levenshtein and this like the longest 

common subsequence problem, it is extremely useful in practice. So, the first thing is to 

suggest spelling corrections. Now, if somebody types something that is a wrong, then it 

is spelling corrective will have to suggest the correct word from the dictionary to replace 

it. So, which word should the spelling corrective choose? 

So, one criterion for choosing is to identify among all the words in the dictionary that are 

possible which one is closest to the one that has been typed. So, this can be measured in 

terms of this edit distance and then that many you will ((Refer Time: 03:29)) did you 

mean typist. This also happens when you type queries and search engines. So, if you type 

something to Google, Google will sometimes change your query to a word which is 

meaningful, because it recognizes that you mistyped a name or a concept. 

We also said that the longest common subsequence problem that we saw earlier is useful 

in Genetics, in Bioinformatics and in the same way edit distance also, if you want to 

compare the genetic information in two different species, then it is natural to become to 

compare them in terms of the content of the DNA and DNA have just long sticks. So, 

you want to find out how easy or difficult it is to transform one piece of DNA to another 

and depending on that we can tell whether two species are closed to each other or not. 
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So, if you go back to the longest common subsequence problem, so one way of thinking 

a longest common subsequence is supposing I just delete all the parts which are not part 

of the LCS, so I had things like bisect and secret. So, now, in this if I deleted the b and i 

from here and the r and e from here, then I am left with exactly the longest common 

subsequence. The other way of thinking about it is let identity, I have start with one word 

and I am transforming it to this word, so I first delete the b and i and then I insert here 

the r e. 

So, I do not operate on both words and delete from both, I operate only on the first word. 

So, I delete the words, I delete the letters I do not want, because I not have a second 

word and I insert the letter, so I do want which are there in the second not in the first and 

in this way I transform the first word to the second word and this is equivalent to deleting 

from both and come it to a common subsequence. So, this tells us that LCS is somehow 

equivalent to computing the edit distance, if I only allow delete and insert. So, the 

interesting thing about edit distance is that it also allows a substitution of one character 

and other. So, it might give us a slightly different metric from longest common 

subsequence. 
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So, going back to longest common subsequence, it says that if two letters match at the 

beginning of a word, then it is useful to assume that the common subsequence includes 

that. So, I have this one which says that a i is equal to b j, so I include this in my 

subsequence and then I solve the rest of the problem. Otherwise, I take the max of the 

two sub problems that I get by dropping a i or b j. 

(Refer Slide Time: 06:13) 

 

Now, in the edit distance problem we have a similar criterion, if a i is equal to b j, then I 

have nothing to do. So, the edit distance of word starting at i and j is the same as the edit 

distance starting at i plus 1 j plus 1. Recall that we are now doing the opposite of longest 

common subsequence, we are now trying to minimize the number of changes in order to 
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maximize the number of matches. So, if we see that something is already matched, then 

no changes needed, so we just move ahead to the next position. 

Now, if they do not match now three things are possible, so I have a i, a i plus 1 and so 

on and I have b j, b j plus 1 and so on. So, in the first thing I can do is I can directly make 

this into b j, in which case I have now made the first letters exactly equal and so I just 

need to look at i plus 1 j plus 1. The other thing which I can do is to remove this a i all 

together, I just remove this a i. So, now, this disturbance is gone, but I am still left to the 

rest to the problem, so now, I have to now see if i plus 1 onwards matches j onwards. 

And finally, the last thing which I could have done is to introduce that this b j at the 

beginning, so now, this means that these two things now match up. So, now, I have to 

look at a i onwards and b j plus 1 onwards and whichever of these three requires the 

minimum work overall is the one i 1. So, I want to take 1 plus in the solution i plus 1 j 

plus 1 or 1 plus solution i plus 1 j or 1 plus solution for i j plus 1 and take the minimum 

of these three. 

(Refer Slide Time: 07:59) 

 

So, this gives us the final inductive structure that we want. So, ED the Edit Distance for 

the word starting at i and j, if a i is equal to b j it is ED of i plus 1 j plus 1. If it is not 

equal, then it is 1 plus the minimum of the edit distance of these three different sub 

problems and as usual we extent this to m plus 1 n plus 1, but the interpretation is now 

different. If one of the words is empty, then the number of changes I need to make is to 

transform everything else or insert everything from that word you use. 
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So, if I am looking at b j, b j plus 1 to b n and beside I have nothing, then what is the edit 

distance. Well, I have to basically insert this many letters. How many letters are there? N 

n minus j plus 1, so the edit distance when u is empty and v has z position j is n minus j 

plus 1. Likely, likewise b is empty and u is not, it is n minus i plus 1, we have to insert all 

those like this. So, this is a slight difference, it is not zero, but it is the cost of using up 

the letters which are there, which are missing in this word. 

(Refer Slide Time: 09:13) 

 

So, the inductive substructure in edit distance is exactly the same as in LCS. Every 

position depends on i plus 1 j plus 1 and though i plus 1 j and i j plus 1. So, we have the 

same three neighbors depended C that we had as we did before and us usual we can start 

at the bottom right corner and work backwards row by row or corner by corner. So, in 

this case remember that the boundary condition is not zero, but it is n minus j plus 1, so 

as I go up, the number increases. 

So, this is my boundary and now I can just apply my recursive thing which says that t 

matches, for edit distance at t is zero, because I have nothing to do and there is nothing to 

beyond them. Everywhere else, because I do not match, the edit distance is just going to 

be the minimum of the remaining three. So, it is minimum to the remaining three plus 1, 

so in this case if I pick, look at this for example, the minimum of 0, 1 and 2 is 0 plus 1 is 

1. 

The minimum of 4, 2 and 3 is 2, plus 1 is 3 and so on, so it is the minimum of those plus 

1 to make the current. So, I keep doing this and I go left, eventually I will find that the 
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minimum edit distance between bisect and secret is actually 4, I need to make four 

changes, just using the inductive definition that we have done earlier. And as before now 

the question is how do I recover the solution from this, so I follow the path. So, why did 

I get a 4 there, because it is the minimum or it is three ((Refer Time: 10:53)) not equal to 

s. What is the minimum of these three? It is 3, so I went back. 

Similarly, why is this 3 here, because this is the minimum of these, so I went down? So, 

every time I go down, it amounts to saying that I go from i j to i plus 1 j and if you are 

remember in our case, i plus 1 j and i i is corresponds to deleting. Similarly, at this place 

I go a right. This means I go from i j, i j plus 1, this corresponds to inserting. So, what I 

can read of from here is that when I am going to delete this v, I delete this i, then I come 

here, I insert this r and I insert this e. And these are exactly the four changes that I need 

to make in order to transform bisect into secret. 

(Refer Slide Time: 11:41) 

 

So, the pseudo code for every distance is very similar to the longest common 

subsequence. The only major change done is in the initialization, the values at the 

boundary are not zero, but whatever is required to complete the editing. Then, as usual I 

start at the bottom right end and I do columns in right to left rows from bottom to top, if 

the current value if the two values that I am looking at u of r and v of c are it is same, 

then I just postponed the edit distance to the next thing, I have nothing to do here. 

Otherwise, I take the minimum of the sub problems and add 1 for the current changes 

and finally, I have returned the value 0 and 0. 
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The complexity is order m times n, it is exactly the same as the previous one, because 

after fill up this table of size m times n and it takes a constant time to compute. Now, in 

all these three problems there is another issue which we have not addressed. So, let us 

deal with it now. 

(Refer Slide Time: 12:41) 

 

So, this is a space complexity. So, we have this table that we have to compute which we 

have a green is m times n, but notice that the way we computed it for example, was to 

compute this column, then this column, then this column and so on. So, at any given 

point, when I am computing this second column for example, I only read the first 

column. When I need the third column, this column is now not needed anymore, because 
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the third column depends only on the second column from the right. 

So, if I need, if I fill column by column I only need the next column, the column on my 

right and the current column or if I need row by row, the next row and the current row. 

So, in other words while I just keeping two columns or two rows, I can completely 

compute this thing back to 0 0. So, therefore, there was actually no need to rule m times 

n size table as storage. I still have to compute n times, but the time complexity remains m 

times n. So, time is m times n what we are saying that this space can be reduced if, left us 

say that n is the smaller of the two, this space can be reduced topper n by just keeping 

two columns. 

And now you might ask how do I recover the solution, because in the solution I trace 

back the path on the whole thing, well you can actually keep track incrementally as you 

are going, you can build up the solution associated to each entry incrementally, so even 

that can be done in order n space. So, you do not need this table at all even to compute 

back the witness for the given numerical solution. So, in all these problems where we 

have a very limited neighborhood dependency in our dynamic programming, you can 

actually often make do much less space, then it seems to require in terms of the actual 

table as given to you. 
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