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Lecture – 12 

Laminar and turbulent flow 

  

Welcome back to this week’s lecture of hydraulic engineering. We are going to study about 

laminar and turbulent flows. This is the week 3 of this module and this will comprise of almost 5 

lectures of half an hour each. So, proceeding to laminar and turbulent flow, its important to tell 

you about what these types of flows are. 

(Refer Slide Time: 00:50) 

 

So, my question to you is, have you ever observed the candle smoke plume? If you have 

observed, you would note that when the smoke plume above the candle flame there will be a 

smooth part, you know, and there will be a rough part of the smoke. So, this part actually 

indicates this laminar flow and this is the one that is turbulent flow. We will go into more detail 

about what laminar and turbulent flow now. 

 

As I said, what you are going to observe is that smoke actually rises smoothly for initial few 

centimeters. And then without, you know, further going upwards maybe just a little bit upward 

after going that the plume starts fluctuating randomly in all direction or, you know, in other 

words, the flow becomes turbulent and this is indicative of laminar flow. The figure has been 
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adapted from Cengel’s book Fluid Mechanics: Fundamentals and Application, McGraw-Hill 

Higher Education Publication. So, as I said, the flow regime in the first case that is the first case.  

(Refer Slide Time: 02:29) 

 

It is called the laminar flow or smooth streamlines are there and it is actually a very highly 

ordered motion, so, no problems so at all, very, very smooth. In the second case the flow regime 

is turbulent, this means, the velocity fluctuations are there and it is a highly disordered motion. 

So, any chaos, you know, any fluctuations in the velocity is called turbulence. And this is the 

flow that is associated with this is called a turbulent flow. So, what we observe is fluid flow in a 

pipe is laminar when at low velocities. 

 

So, if the velocity is very low the flow in the fluid can be laminar, and as the velocity increases 

the flow becomes turbulent. So, higher velocities are associated with turbulent flow and lower 

velocities are associated with laminar flows, this is the most general thing. But it also depends on 

some other parameters which we will see in the upcoming slides. So, if the flow is laminar 

whether the flow is turbulent it does not only depend on the velocities. 

(Refer Slide Time: 04:03) 
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What happens in nature practically most of the flows in the nature are at turbulent, most of flow, 

we rarely find laminar flow. One real-life example of a laminar flow actually occurs in the our 

blood system. So, in the veins and in the arteries the flow can be laminar, actually it is laminar. 

We will tell you the reasons why later. Laminar flow can also occur when a highly viscous 

fluids, such as, oil flow through a narrow pipe or passages.  

 

So, if you pay attention to what I have said just now, just before that, why the flow in the blood 

is laminar, you can actually understand. So, this is this could be the, you see, narrow pipes. We 

will see numerically also why soon, why the flow in the blood is laminar. Now the factor on 

which the flow regime, flow regime means whether it is laminar or turbulent depends on the 

Reynolds number Re. What is this Reynolds number? Reynolds number is a dimensionless 

number which is the ratio of the inertial forces divided by the viscous forces sorry. 

  

So, it is the ratio of inertial forces to viscous forces or inertial forces by viscous forces. 

Mathematically it is given as, V average multiplied by D divided by nu, so, this has something to 

do with this viscosity, that is, why viscous forces, you see, and this has something to do with 

inertia. This Reynolds equation for Reynolds number is one of the most important thing in this 

course, it will you will encounter the Reynolds number more than you can imagine in this course. 

So, I would recommend that you remember this Reynolds number as inertial forces by viscous 

forces. 
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(Refer Slide Time: 06:37) 

 

Here, V average is the average flow velocity in meters per second, D is the characteristic length 

of the geometry, it can be anything, it could be the diameter, it could be the length and nu is the 

kinematic viscosity of the fluid. This can vary from, you know, problem to problem or geometry 

to geometry. For example, if you consider sand grain it has it can be nothing other than the sand 

diameter, if you consider a pipe it cannot be anything else, other than, the pipe diameter, for 

example. So, Reynolds number is very important, you have to note that again. So, velocity into 

characteristic length by viscosity. 

(Refer Slide Time: 07:46) 
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For example, for flow through pipes, if the Reynolds number is less than 2300, we consider the 

flow as laminar flow, important to remember. So, if you are given, the pipe diameter, the flow 

velocity, you can easily tell if the flow is laminar or turbulent. What you can do is, you can 

calculate Reynolds number as VD by nu, this is known, this is told and D is also told. So, you 

can calculate Reynolds number. For Reynolds number between 2300 and 4000 the flow is 

transitional.  

 

So, there is one other category of flow apart from laminar and turbulent called transitional flow, 

which means that the laminar regime has just ended and the fully turbulent regime has not yet 

started. So, some of the flow could be laminar, sorry, the flow could have still some laminar 

properties and some turbulent. But when the Reynolds number goes over and above 4000 for 

pipe flow this becomes, the flow becomes fully turbulent, this is you know a guideline. 

 

So, remembering all these three values is not a bad idea. If you also, I mean, some books will say 

2100 as well, but the idea is it should be around 2000 laminar flow. So, around 2000, 22-2300 is 

the value recommended by many books. All these velocities, I mean, the all these velocity 

measurements and Reynolds number measurement is experimental in nature.  

(Refer Slide Time: 09:45) 

 

So, now laminar flow in circular pipes, so, after dealing telling you the basics of how to define 

the, you know, how to define and find what laminar and turbulent flow is, we are going to see 

188



some of the properties of laminar flow in circular pipes. So, for deriving anything there are 

certain assumptions first that we have to take. We have to assume steady flow, what does this 

assumption of steady flow mean, that the situation or the condition is not dependent on time.  

 

Second assumption is, it is laminar flow, this means the Reynolds number is fairly less than 

2300, as we have seen in the last slide. And the flow is incompressible which means density is 

constant, the density does not changes either in space or with time. And we also have to assume 

the flow is fully developed, that means there is no, you know, intermittent phenomenon that is 

happening, a flow has happened over a long period of time. And then we are going to calculate 

the properties. 

 

Because when the flow start the situation it is actually first thing that will happen is it being non-

steady, you know, it will change the function. After flow is fully developed, you know, the flow 

has happened over a long period of time and then the flow becomes fully developed it has 

occupied the entire pipe, for example, so, it is fully developed. Fully developed has something to 

do with the boundary layer phenomenon that is why I have not mentioned it before but we will 

see it in the next week.  

(Refer Slide Time: 11:35) 

 

Now, after going through the assumptions, we will consider a coaxial ring shaped fluid element 

of radius ‘r’ whose thickness is ‘dr’ and length is ‘dx’ and the flow is from left to right. As I said, 
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the best way to describe a problem is to draw it. So, what we have assumed is, we have assumed 

a coaxial ring shaped fluid element of radius ‘r’. So, this is the flow, you know, this is the profile 

and we have assumed this fluid element, which having thickness ‘dr’ and length ‘dx’ and the 

flow is happening from left to right in this direction.  

(Refer Slide Time: 12:35) 

 

So, we have kept this figure for the forces in the right hand side. So, if you see, there will be 

pressure forces acting P x from the left, P x + P pressure force are at x + dx from the right and 

then there will be shear forces acting here, in this direction and there will be shear forces acting 

at Tr + dr, you know, and if we apply the force balance, so,  

            

Now, this one, force acting in this direction which is positive in sign and there is another force 

acting in the negative direction, so, that is what we have done. So, again this is a shear force, so, 

we have multiplied this tau here, the one here, with 2 pi r dx, because this is the thickness over 

which it is, I mean, so, this is the length over which it is acting. So, this was if you see, this was 

dx and this was dr. So, multiplication of dr was done for pressure at, I mean, for this force and 

this force, however, multiplication with x will be done for the tau shear stress and the shear stress 

here.  

So, this was positive sign, 2 pi r x dx in the area and the shear stress is tau at r minus, because 

this is the minus 1, because it is in the negative x direction, same area 2 pi r dx into tau at r + dr. 
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So, this denotes where this force is, it is at x, this is at x + dx, this is at r and this is at r + dr 

location. So, now if we rearrange this equation here, equation 1 and we divide both sides by 2 pi 

r dr into dx.  

So, this equation will come out to be, r P x + dx - P x by dx, because 2 pi r dr will be cancelled 

from here and here. So, this is the first term and the second term will happen. So, here, 2 pi r dx 

will be cancelled out and the dr will be remaining. So, it will be this term and both will be sum 

will be equal to 0 very simple to obtain, just considering this and this. So, this is another equation 

that we call equation number 2.  

(Refer Slide Time: 16:17) 

 

Now, equation number 2 can be written as simply you see, so this is pressure at x + dx - P x by 

dx, so it can be written as, dP dx and this can be written as, d r into tau dr. So, this is the 

differential form of the equation. Now, if we use the standard tau is equal to minus mu du dr, 

why do we do this? Actually this is an assumption for laminar flow. So, if we have a laminar 

flow we can assume shear stress as a function of minus, you know, as a function of du dr or in 

other terms tau is equal to minus mu du dr.  

 

So, minus mu du by dr, this is laminar flow. So, if we use this equation here, then what we get? 

We can get, mu by r d dr of r du dr is equal to dP dx because this minus will make it come on 

this side and this dP dx can be on the left side, right side.  

(Refer Slide Time: 18:36) 
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So, now what is dP dx? So, to find dP dx, we have to consider the force balance on fluid element 

of radius R. So, we consider a fluid element of radius R, it is quite simple, their pressure here is 

P. So, it becomes pi R square P, this force and this force is pi R square P + dP and the same thing 

is there is the shear stress acting here. So, this is the tau w. So, almost the same type of equation 

is there, pi R square P - pi R square P + dP force balance - 2 pi Rdx tau w.  

 

So, this is the wall. So, what we get is, if you see, the equation that we get here is,  

 

which is a constant. So, if we integrate this equation, equation 4, so, this is the equation 4, after 

obtaining this result here.  

(Refer Slide Time: 20:20) 
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What we are going to get if we integrate this? We will get, u as a function of r is 

 

, this is an important equation. So, now we will talk about some boundary conditions. Boundary 

conditions are something that we used to determine the constants of these equations. So, one of 

the boundary condition is that we had actually used in the derivation of dP dx that, you know, u 

is equal to 0 at when radius is equal to capital R. This is called no slip condition at pipe wall 

because pipe wall is at rest.  

 

So, the fluid element adjacent to the wall will also be at rest. So, u at r is equal to small r is equal 

to capital R is 0. Another thing we will have the uPrime at R is equal to 0 or at the center line it 

is going to be 0 that is symmetry about the center line.  

(Refer Slide Time: 21:46)  
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So, if we utilize the above boundary conditions, equation 5 will take the following form. So, C 1 

and C 2 will be eliminated and we will have u as a function of r will be given as  

 

. And this is velocity profile which is parabolic in nature, this is important to note, you see, this 

part here is parabolic.  

 

So, this now you can recollect and see why we started with this particular profile because in 

reality in derivation you will find this profile which is parabolic in nature. So, u as a function of r 

if you find out if you put r is equal to R at boundary just check u R, so is going to be 0 this is 

satisfied. But actually we use this assumption to derive, so, we should not say that this is actually 

a check of the equation because of course it is going to be that because that was the boundary 

condition. 

(Refer Slide Time: 23:17) 
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Now, what is being what will be the average velocity, maximum velocity and the discharge in 

this type of flow. So, the average velocity will be integration of velocity with a small area 

divided by entire area, this is the definition of average velocity. And if you put, u r as what we 

have obtained from the last slide and if you assume that small element it is the area will be 2 pi r 

dr, correct.  

 

So, if you put u r is equal to this and area is 2 pi r dr, then you are going to obtain the average 

velocity as minus R square by 8 mu multiplied by dP dx, this is again an important. So, these are 

some of the top, I mean, things that you get in gate as well gate. So, now you have obtained the 

average velocity. So, if you see, the velocity profile, parabolic profile you can easily actually see 

the maximum velocity, sorry, the maximum velocity occurs at r is equal to 0.  

 

So, if we put r is equal to 0 in the equation from the last slide, that is, equation 6 u max will be  

 

. And it is very, if you see the relation, u max is equal to 2 times u average, if you divide this, 

divide this by divide this you will get 1 by 2. So, you see, so, this is the V average here, and this 

is the u or V whatever you want to say, or u max is equal to 2 V average and the simply the total 

discharge is going to be V average into a, that is, minus pi. So, V average we already know, and 
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you multiply the area. So, you will get, so, it is R square already, and then what do you multiply 

with pi R square, and this is the Q that you are going to get.  

(Refer Slide Time: 26:32) 

 

So, now we are going to see the first problem from the laminar flow. So, the problem is, there is 

a liquid X which is flowing through a 4 centimeter diameter, horizontal and a circular pipe at 40 

degree centigrade. This is what we have done before. The flow velocity at the centerline of the 

pipe is measured to be 6 meter per second. So, basically what this says we have measured the 

centerline velocity of the pipe.  

 

We have to determine the flow velocity profile. The density and the dynamic viscosity of the 

liquid x at 40 degree centigrade are, so, they are telling us the density is this one 1252 kilogram 

per meter cube and dynamic viscosity is point 3073 Pascal second. So, they have told a certain 

piece of information and we have to solve this problem. So, how do we do that. Now I what I am 

going to do is, I am going to use the white screen for that and the best way is first we have to 

write what are the things that are given. 

(Refer Slide Time: 28:09) 
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So, we have to write the things that are given. So, we are given the diameter is equal to 4 

centimeter, which is 4 into 10 to the power minus 2 meters. Therefore, the radius is going to be D 

by 2 or simply, 2 into 10 to the power minus 2 meter. We are also given the centerline velocity 

which is, we have seen in our derivation as, u max, that is, 6 meters per second. We are also told 

that density is 1252 kilogram per meter cube and also the kinematic viscosity in SI unit is point 

3073 Pascal second.  

 

So, what was the first thing that we did? We wrote down everything that is given. This is the 

very good practice. So, this is for an assumption that the flow is laminar, so, we say let the flow 

is laminar. Therefore, V average is going to be u max / 2 and, that is, 6 / 2 is equal to 3 meters 

per second. So, now we have assumed that the flow is laminar, we have to check also. Therefore, 

first, we have to check the Reynolds number we say, Reynolds number is rho V average.  

 

This is one term multiplied by D by mu. Because in the definition that we saw, it was nu and nu 

is mu by rho, so rho goes up, so it is 1252 into 3 into 4 into 10 to the power minus 2 divided by 

point 3073 and that comes almost 489. So, Reynolds number is without dimension that is very, 

489 which implies that this is laminar flow and therefore our assumption of laminar flow is 

correct. So, we will go to another page. So, we will go to white screen again. 

(Refer Slide Time: 31:34) 
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So, we say for laminar flow in circular pipes u of r is written as very, minus R square by 4 mu dP 

dx, this was the formula that we derived already and we know many values. So, we can simply 

write, minus R, we already know, 2 into 10 to the power minus 2 divided by 4 into 0.3073, dP dx 

we do not know into 1 - r square, capital R we know, 2 into 10 to the power minus 2 whole 

square. So, this is the profile that we are able to find. If you want to simplify it further, we can 

simply write, u of r as minus 1 by 3073 dP dx into 1 - r square 4 into 10 to the power minus 4.  

 

So, we have derived u as a function of r. dP dx is something that we do not know, I mean, or if 

we know this then our problem will be solved. So, I will just go to the screen on white screen and 

this is what was asked, to determine the flow velocity profile. So, now I think we will start with 

another problem in our next lecture. So, I will just showing you the problem I am not going to 

repeat it this question because we will start our next lecture with this particular problem. So 

thank you for watching and we resume in the upcoming lecture, thank you so much. 
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