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(a) Linear methods of setting out curves  
The following methods of setting out simple circular curve are linear as measurement is doen 
using chain/tape/distance/EDM: 

1. By ordinates from the long chord 
2. By successive bisection of arcs 
3. By offsets from the tangents 
4. By offsets from chords produced 

 
1. By ordinates from the long chord:   
In this method, the perpendicular offsets are erected from the long chord to establish points 
along the curve, as shown in Figure 2.5.  
 
If T1T2 is the length of the long chord (L), ED = O0 which is the offset at mid-point (E) of the 
long chord (the versine), and PQ = Ox which is the offset at distance x from E.  Draw a line 
QQ1 parallel to T1T2 which meets OD at Q1, and line OQ1 which cuts T1T2 at point E.  

 
Figure 2.5 Setting out the curve by ordinates from the long chord 

 
OQ1 = OE + EQ1  
        = (OD- DE) + EQ1 
        = (R – O0)  + Ox 
 
From OQQ1   
OQ2 = QQ1

2 + OQ1
2 

 
But OQ = R, and QQ1 = x 
R2 = x2 + {(R – O0) + Ox}2 

or   22
0 xROOR x   

Hence  0
22 ORxROx            (2.9)  

OE = √ (OT1
2 – T1E2) 

       = √ [R2 –(L/2)2] 
 
Where O0 = ED = OD – OE 



118 
 

But OE =
2

2

2








L
R  

So  O0

2
2

2








L
RR         (2.10) 

In relationship 2.9, the value of O0 may be replaced as-   

                     Hence  22 xROx [ R-{ 
2

2

2








L
RR }]   (2.11) 

The curve is set out as below:  
(i) Divide the long chord into an even number of equal parts, if possible. 
(ii) Calculate the offsets using equation (2.11) at each of the points of division.  
(iii)Set out the offset at respective points on the curve.  
(iv) Since, the curve is symmetrical about the middle-ordinate, therefore the offsets for the 

right-half of curve will be same as those for the left–half curve.    
(v) The method is suitable for setting out short curves e.g., curves for street bends.  

 
2. By successive bisections of arcs:  
It is also known as Versine method. In Figure 2.6, a curve T1DT2 is to be established on the 
ground by this method. The steps involved are- 

 
Figure 2.6 Setting out the curve by successive bisection of arcs 

 
(i) Join T1T2 and bisect it at E. Set out the offset ED (which is equal to the versine 







 

2
cos1


R , thus a point D on the curve may be fixed. 

(ii) Join T1D and DT2 and bisect them at F and G, respectively. Then set out the offsets FH 

and KG at F and G, respectively, in the same manner, each equal to 





 

4
cos1


R . Thus, two 

more points H and K are fixed up on the curve.  
(iii) Now, each of the offsets can be set out at mid points of the four chords T1H HD, DK 

and KT2 which is equal to .
8

cos1 





 


R   

(iv) By repeating this process, several points may be set out on the curve, as per the need.  
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(v) This method is suitable where the ground distance outside the curve is not favorable for 
measurements by tape. 
 
3. By offsets from the tangents: The offsets may be either redial or perpendicular to the 
tangents.  
 
 
(a) By radial offsets  
In Figure 2.7, if Ox = PP1 which is the radial offset at P from O at a distance of x from T1 
along the tangent AB, then- 

PP1 = OP – OP1 where ROPandxROP  1
22  

RxROx  22   (Exact)       (2.12)  

 
Figure 2.7 Setting out the curve by radial offsets from the tangents  

 
When the radius of curve is large, the offsets may be calculated by the approximate formula as 
derived below. Using the property of a circle, we can write;   
         PT1

2 = PP1   (2R + PP1) 
             x2 = Ox (2R + Ox) = 2ROx + Ox

2 
 
Since Ox

2 is very small as compared to 2R, it may be neglected. Hence,  
 x2  = 2R Ox 

or  Ox = 
R

x

2

2

   (approximate)     (2.13) 

 
(b) By offsets perpendicular to the tangents 
In Figure 2.8,  Ox = PP1 which is the perpendicular offset at P at a distance of x from T1 along 
the tangent AB.  Draw P1P2 line parallel to BT1 
P1P2 = PT1 = x, and   T1P2 = PP1 = Ox  
Now T1P2 = OT1 – OP2 

Where OT1 = R, and 22
2 xROP   

So 22 xRROx    (exact)      (2.14)  
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Figure 2.8 Setting out the curve by offsets perpendicular to the tangents 

 
Approximately, the formula may be obtained similarly as equation 2.13;  

R

x
Ox 2

2

   (approximate)        (2.15) 

 
Procedure of setting out the curve:  
(i) Locate the tangent points T1 and T2. 
(ii) Measure equal distances, say 15 or 30 m along the tangent from T1. 
(iii) Set out the offsets calculated by any of the above methods at each distance (say x), thus 
obtaining the required points on the curve.  
(iv) Continue the process until the apex of the curve is reached.  
(v) Set out the other half of the curve from the second tangent; being symmetrical in 
nature.  
 
This method is found to be suitable for setting out sharp curves where the ground outside the 
curve is favorable for measuring the distance.    
 

5. By offsets from chords produced 
In Figure 2.9, if AB is the first tangent, T1 is the first tangent point, E, F, G etc., are the 
successive points on the curve. Draw arc EE1, so T1E= T1E1= C1 which is the first chords. 
Similarly, EF, FG, etc., are successive chords of length C2, C3 etc., each being equal to the 
full chord length. BT1E=  in radians (angle between tangent BT1 and the first chord T1E).  
E1E= O1 which is the offset from the tangent BT1, and E2F= O2 which is the offset from the 
chord T1E produced. Produce T1E to E2 such that EE2 = C2. Draw the tangent DEF1 at E 
meeting the first tangent at D and E2F at F1, then-  

 
Figure 2.9 Setting out the curve by offsets from the chord produced  
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BT1E =    
T1OE = 2  (The angle subtended by any chord at the centre is twice the angle between the 
chord and the tangent 

 2
1

1 
OTRadius

EarcT
 

But arc T1E may be taken as approximately equal to chord T1E = C1 

so,    21 
R

C
   or 

R

C

2
1        (2.16) 

also    
ET

EEarc

1

1 =  

But arc E1E is approximately equal to chord E1E = O1 , and T1E = C1, so 
 11 CO  

 
Putting there the value of  as calculate above. 

R

C

R

C
CO

22

2
11

11            (2.17) 

 
Now O2 = offset E2F = E2F1 + F1F 
To find out F2F1, consider the two triangles T1EE1 and EF1E2 
E2EF1 = DET1 (vertically opposite angles) 
DET1 = DT1E, since DT1 = DE, both being tangents to the circle  
E1FF1 = DET1 = DT1E 
 
Both the triangles being nearly isosceles, may be considered as approximately similar. So we 
may write- 

11

1

2

12

ET

EE

EE

FE
  

 
1

1

2

12

C

O

C

FE
  

or  
1

12
12 C

OC
FE


   

or     
R

CC

R

C

C

C

22
21

2
1

1

2   

F1F being the offset from the tangent at E, is equal to  

 
R

C

R

EF

22

2
22   

O2 = offset E2F = E2F1 + F1F 

R

C

R

CC
O

22

2
221

2   

      212 CCC   / 2R        (2.18)  

Similarly, the third offset, 
 

R

CCC
O

2
323

3


       (2.19) 

In the same way, remaining offset O4, O5, etc. may be computed using the general relationship. 
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R

CCC
O nnn

n 2

)( 1            (2.20) 

 
Since C2 = C3 = C1 ……………… etc., so equations 2.18 and 2.19 may be written as; 

R

C
O

2
2

2   and 

R

C
O

2
2

3            (2.21) 

It is to be noted that first and last offsets may have different length (due to the chainages of 
their chord lengths), while all intermediate offsets will have equal length.  
 
Procedure of setting out the curve:   

(i) Locate the tangent points (T1 and T2) and find out their chainages. From these 
chainages, calculate the lengths of first and last sub-chords and find out the offsets by 
using above equations.  

(ii) Mark a point E1 along the first tangent T1B such that T1E1 equals the length of the first 
sub-chord. 

(iii)With the zero end of the tape at T1, swing an arc E1E equal to radius T1E1, and mark 
point E such that E1E = O1 , thus fixing the first point E on the curve.  

(iv) Line T1E is produced and E2 equal to the second sub-chord is marked, and an arc from 
E2 is drawn such that EE2 = EF to locate the second point F on the curve.  

(v) Continue this process until the end of the curve is reached. 
(vi) The last point fixed in this way should coincide with the previously located point T2. 

If there is small closing error, all points on the curve are moved sideways by an amount 
proportional to the square of their distances from the tangent point T1, but if the error 
is large, the entire process is repeated. 

 
This method is commonly used for setting out road curves.  
 
(b) Angular methods of setting out curves 
There are two methods of setting out simple circular curves by angular methods: 
 
1. Rankine’s method of tangential angles 
2. Two theodolites method 
 
1. Rankine’s method of tangential or deflection angles:  
In Rankine’s method, the curve is set out by the tangential or deflection angles using a 
theodolite and a tape. The deflection angles are calculated to set out the curve (Figure 2.10). 
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Figure 2.10 Curve setting by Rankine’s method  

 
If T1 and T2 are the tangent points and AB the first tangent to the curve, D, E, F etc., are the 
successive points on the curve,  is the deflection angle of the curve, R is the radius of the 
curve, C1, C2, C3, etc., are length of the chords T1D, DE, EF etc.., .,, 321 etc  are the 

tangential angles which each of the chords T1D, DE, EF, etc., makes respectively with the 
tangents at T1, D, E, etc., 1, 2, 3 etc., are the total tangential or deflection angles which the 
chords T1D, DE, EF, etc. make with the first tangent AB, then- 
 
The chord T1D can be taken as equal to arc T1D = C1 

1111 2
2

1   ODTDBT  

radiansinODT
OTradius

DTarc
1

1

1   

or 1
1 2

R

C
 radians  

or  radians
R

C

2
1

1   

degreesx
R

C


180

2
1  

minutes
R

C
60

180

2
1

1 


    

1  = 1718.9 C1 / R minutes        (2.22) 

,9.1718,9.1718 3
3

2
2 R

C

R

C
   and so on  

So we can write a general relation as: 

minutes
R

Cn
n 9.1718          (2.23) 

Since each of the chord length C2, C3, C4………..Cn-1 is equal to the length of the full chord, 
so .......................... 1432  n  

The total tangential angle () for the first chord (T1D) 
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11  DBT  

11, So  
The total tangential angle (2) for the second chord (DE) = EBT1  
But EDTDBTEBT 111   
Since, the angle between the tangent and a chord equals the angle which the chord subtends in 
the opposite segment, so DT1E is the angle subtended by the chord DE in the opposite 
segment, therefore, it is equal to the tangential angle  2  between the tangent at D and the 
chord DE. 

2212    

323213,  Similarly  

A general relationship would be as follows: 
nn   ............321  

                      nnn  1         (2.24)  

Apply check: The total deflection angle BT1T2 = 
2


 n  

If the degree of the curve (D) is known, the deflection angle for a 30 m chord is equal to D/2 
degrees, and that for the sub-chord of length C1, it would be; 

230
1

1

DC
  degrees 

60
1

1

DC 
  

60
2

2

DC 
  and so on. 

60

DCn
n


            (2.25) 

 
Procedure of setting out the curve:  

(i) Locate the tangent points T1 and T2, and find out their chainages. From these chainages, 
calculate the lengths of first and last sub-chords and the total deflection angles for all 
points on the curve.   

(ii) Set up the theodolite at the first tangent point T1.  
(iii)Set the initial horizontal circle reading to zero and direct the telescope to the intersection 

point and bisect it.  
(iv) Set the first deflection angle  in theodolite, and direct the telescope along T1D. Along 

this line, measure T1D equal in length to the first sub-chord, thus fixing the first point 
D on the curve.  

(v) Now set the second deflection angle 2 in theodolite, and direct the line of sight along 
T1E. Hold the zero end of the tape at D and swing the other end until the tape is bisected 
by the line of sight, thus fixing the second point E on the curve.  

(vi) Continue the process until the end of the curve is reached.  
(vii) The end point thus located must coincide with the previously located point (T2). If not, 

the distance between them is the closing error. If it is within the permissible limit, only 
the last few pegs may be adjusted; otherwise the curve should be set out again.  

 
Note: In the case of a left-handed curve, each of the value 1, 2, 3

 etc., should be subtracted 
from 3600 to obtain the required value to which the reading in theodolite is to be set i.e., the 
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vernier should be set to (3600-1), (3600-2), (3600-3), etc., to obtain the 1st, 2nd, 3rd etc., points 
on the curve.  
 
The method is highly accurate, and is most commonly used for railways and other important 
curves.  
 
2. Two theodolite method 
This method is very useful in the absence of distance measurement by tape, and also when the 
ground is not favorable for accurate distance measurement. It is a simple and accurate method 
but essentially requires two theodolites to set the curve, so it is not as popular method as the 
method of deflection angles. In this method, the popular property of a circle “that the angle 
between the tangent and the chord equals the angle which that chord subtends in the opposite 
segment” is used.  
 
In Figure 2.11, if D, E, etc., are the point on the curve to be established, then- 
 
The angle 1 between the tangent T1B and the chord T1D i.e., BT1D= 1=T1T2D. 
Similarly, BT1E= 2 = T1T2E, etc.  
The deflection angles 1, 2, etc., are calculated to establish the curve using deflection angle. 

 
Figure 2.11 Curve setting by two theodolite method 

 
Procedure of setting out the curve:  

(i) Set up two theodolites, one at T1 and the other at T2. 
(ii) Set horizontal angle reading of the theodolite at T1 to zero along T1B, and similarly the 

theodolite at T2 to zero along T2T1.  
(iii)Set both the theodolite at T1 and T2 to read the first deflection angle . Now the line of 

sight of theodolite at T1 would be along T1D and that of the theodolite at T2 along T2D. 
The point of intersection of these line of sights is the required point D on the curve. 
Establish point D on the ground with the help of ranging rods.  

(iv) Now set both the theodolites to second deflection angle , towards T1E and T2E 
respectively, and proceed as before to establish the second point E on the curve.  

(v) Repeat the process until the other points on the curve are set out.  
 
Note: If point T1 is not be visible from the point T2, in such a case direct the telescope of 
the instrument at T2 towards B with reading set to zero. Now set the reading to read an 

angle of 





 

2
3600 

, directing the telescope along T2T1. For the first point D on the curve, 
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set the reading to read .
2

360 1
0 






 


 Similarly for the second point E, set the reading 

to read 2
0

2
360 






 


 and so on.  

 
2.4 Compound Curves   
A compound curve consists of two different radii, as shown in Figure 2.12, with their centre at 
OS and OL. The radius of curve RS is smaller than the radius of curve RL. The two circular 
curves with different radii meet at a common point OL. The compound curve is tangential to 
three straights AB, KM, and BC at T1, N and T2, respectively. Points N, OS and OL will lie in 
a straight line. The tangents AB and NK intersect at K, and tangents BC and NM will intersect 
at M. 
 

 
Figure 2.12 A compound curve 

 
2.4.1 Elements of a compound curve 
In Figure 2.12, it is shown that a compound curve has three straights AB, BC and KM which 
have tangential at T1,T2 and N, respectively. The two circular arcs T1N and NT2 having centres 
at O1 and O2. The arc having a smaller radius may be first or second curve. The tangents AB 
and BC intersect at point B, AB and KM at K and BC and KM at M.  
 
If T1 is the point of curvature, T2 is the point of tangency, B is the point of intersection, N is 
the point of compound curve (PCC), TS is the length of tangent of the first curve, TL is the 
length of tangent of the second curve, ts is the length of tangent to curve T1N , tL is  the length 
of tangent to curve NT2 , K is the vertex of the first curve, M is the vertex of the second curve, 
Rs is the smaller radius O1T1, RL is the larger radius O2T2,  is the deflection angle between 
rear tangent (AB) and forward tangent (BC), α is the deflection angle between rear tangent 
(AB) and the common tangent (KM),  β is the deflection angle between forward tangent (BC) 
and common tangent (KM),  L1 is the length of first chord, L2 is the length of second chord, 
L is the length of long chord from T1 to T2, lS is the length of first arc, lL is the length of second 
arc, l is the length of total curve, Rs is the smaller radius O1T1, RL is the larger radius O2T2, Φ 
is the deflection angle between rear tangent (AB) and forward tangent (BC), α is the deflection 
angle between rear tangent (AB) and the common tangent (KM), and β is the deflection angle 
between forward tangent (BC) and common tangent (KM), then-  
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Angle T1BT2 = I = 180° - Φ 
Φ = α + β          (2.26) 
 
KN = KT1 = ts = Rs tan (α/2)        (2.27) 
MN = MT2 = tL= RL tan (β/2)        (2.28) 

KM 
2

tan
2

tan


LSLS RRttNMKN       (2.29) 

Applying sine relationship in BKM, we get- 

         
I

KMBK

sinsin



 

         


0180sinsin

KMBK
 

or    
 sinsin

KMBK
  

so   
 







sin

sin

sin

sin LS ttKM
BK


  

But     TS  = BT1 = BK + KT1   

               
 




sin

sinLS tt 
 + ts        (2.30) 

Similarly, applying sine relationship in BKM 

  
 







sin

sin

sin

sin LS ttKM
BM


  

 22 MTBMBTTL   

                 
 

Lt
KM





sin

sin
        (2.31) 

Length of the first curve = lS = RS α (π / 180)     (2.32) 
Length of the second curve = lL = RL α (π / 180)     (2.33) 
Total length of curve (l) = lS + lL       (2.34) 
 
2.4.2 Setting out the compound curve  

(i) The compound curve may be set out by the method of deflection angles from two points 
T1 and N; the first curve from point T1 and the second one from point N.  

(ii) Locate B, T1 and T2, and find out the chainage of T1 from the known chainage of B and 
length BT1. 

(iii)Find out the chainage of F by adding the length of the first curve to the chainage of T1, 
and find the chainage of T2 by adding the length of the second curve to the chainage of 
F.  

(iv) Calculate the deflection angles.  
(v) Set up the theodolite at T1, and set out the first curve.  

(vi) Shift the instrument and set it at point F. With the horizontal angle set to 





 

2
3600 

, 

take a back sight on T1 and transit the telescope and swing through 
2


, the line of sight 

will be directed along the common tangent FE and the reading will read 3600. 
(vii) Set the vernier to the first deflection angle as calculated for the second curve, 

thus directing the line of sight to the first point on the second curve.  
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(viii) Process is repeated until the end of the second curve is reached.  

Check: Measure the angle T1FT2, which must equal 1800 
2


 . 

2.5 Reverse Curves 
A curve consisting of two circular arcs of similar or different radii having their centres on 
opposite sides of the common tangent at the point of reverse curvature is known as a reverse 
curve (Figure 2.13). It is also known as a serpentine curve or S-curve due to its peculiar shape. 
It is generally used when two lines intersect at a very small angle. Reverse curves are used to 
connect two parallel roads or railway lines. These curves are best suited for hilly terrains and 
highways for relatively low-speed vehicles. Reverse curves are not advisable to use on the 
highways and railways which are meant for high-speed traffic movement because of the 
following reasons:  
 
(a) A sudden change in direction can be dangerous for vehicles. 
(b) A sudden change in curvature and direction increases wear & tear in vehicles, and also 
provides discomfort to the people traveling along the route. 
(c) It may cause the vehicle to overturn over a reverse curve, if the vehicle is moving with a 
greater speed. careless. 
(d) At the Point of Reverse Curvature (PRC), super-elevation can’t be provided. 
(e) Sudden change in super-elevation from one edge to another edge on reverse curve is 
required which is difficult to achieve.  
(f) The curves cannot be properly provided superelevation at the point of reverse curvature 

 
Figure 2.13 A  reverse curve 

 
If  PC is the point of curvature, PT is the point of tangency, PRC is the point of reversed 
curvature, T1 is the length of tangent of the first curve, T2 is the length of tangent of the second 
curve, V1 is the vertex of the first curve, V2 is the vertex of the second curve, I1 is the central 
angle of the first curve, I2 is the central angle of the second curve, Lc1 is the length of first 
curve, Lc2 is the length of second curve, L1 is the length of first chord, L2 is the length of second 
chord, and (T1 + T2) is the length of common tangent measured from V1 to V2 , then- 
 
Finding the chainage of PT: 
(i) Given the chainage of PC, then the 
Chainage of PT=  Chainage of PC+Lc1+Lc2      (2.35) 
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(ii) Given the chainage of V1, then the 
Chainage of PT= Chainage of V1−T1+Lc1+Lc2     (2.36) 
 
2.5.1 Elements of a reverse curve 
Figure 2.14 shows a reverse curve made up of two different radii. In this Figure, R1 is the 
smaller radius (O1A=O1D), R2 is the larger radius (O2D = O2B), Δ1 is the angle subtended at 
the centre by the arc of smaller radius R1, Δ2 is the angle subtended at the centre by the arc of 
larger radius R2, V is the perpendicular distance (AJ=MN) between two straights (parallel 
tangents) AM and BN, h is the distance between the perpendiculars at A and B, L is the length 
of the line joining the tangent points A and B.  

 
Figure 2.14 Elements of a reverse curve 

 
D is the point of reverse curvature, and from it a line perpendicular to the straights AO1 and 
BO2 is drawn, cutting these at G and H. Draw perpendicular from O1 and O2 at line AB which 
will cut this line at P and Q, respectively, dividing the angle of deflection into half AO1P = 
DO1P, and BO2Q = DO2Q). 
 
When  Δ1 = Δ2 = Δ   
Perpendicular distance (V) = AG + GJ) = (AG + BH) 
V = (O1A – O1G) + (O2B – O2H)        (2.37) 
Here, O1A = R1, and O2B = R2 
cos Δ = O1G / O1D  = O1G / R1 
O1G = R1 cos Δ  
cos Δ = O2H / O2D  = O2H / R2 
O2H = R2 cos Δ  
From equation 2.37,  
V = (R1 - R1 cos Δ) + (R2 – R2 cos Δ) 
V = R1(1- cos Δ) + R2 (1– cos Δ) 
= (1- cos Δ)(R1 + R2) 
V = (R1 + R2) versin Δ        (2.38) 
 
Total length (L) = AD + DB  
But AD = AP + PD and DB = DQ + QB 
In triangle O1PA  
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Sin Δ/2  = AP / O1A   
AP = R1 sin Δ/2   
AD = 2 R1 sin Δ/2  (since AP = PD) 
Similarly, in triangle O2QB 
Sin Δ/2  = BQ / O2B   
BQ = R2 sin Δ/2   
DB = 2R2 sin Δ/2  (since DQ = QB) 
Total length (L) = AD + DB  
So, L = 2R1 sin Δ/2  + 2R2 sin Δ/2 
L =   2(R1 + R2) sin Δ/2        (2.39) 
 
In triangle ABJ  
Sin Δ/2  = AJ / AB  = V / L         
Equations 2.39 can be written as- 
L = 2(R1 + R2) V / L   
L2 = 2V (R1 + R2) 
L = √ [2V (R1 + R2)]         (2.40) 
 
Distance between the end points of the reverse curve measured parallel to the straights (h) = 
GD + DH 
In triangle GO1D  
sin Δ = GD / O1D or GD = R1 sin Δ  
In triangle BO2D  
sin Δ = DH / O2D or DH= R2 sin Δ  
So, h = GD + DH 
= R1 sin Δ + R2 sin Δ 
h = (R1 + R2) sin Δ         (2.41) 
 
Length of the first curve AD (l1) = R1 Δ (π /180) 
Length of the second curve DB (l2) = R2 Δ (π /180) 
Total length of the curve ADB (l1 + l2) =  Δ (π /180) (R1 + R2)   (2.42) 
 
If the radius of the two curves are equal-  
From equation 2.38, V = 2R versin Δ       (2.43) 
From equation 2.39, L = 4R sin Δ/2       (2.44) 
or R = L / (4 sin Δ/2) 
From equation 2.40, L = √(2V * 2R)  = √4 VR      (2.45) 
or R = L2 / 4V 
From equation 2.41, h = 2R sin Δ       (2.46) 
From equation 2.42, total length of the curve ADB (l1 + l2) =  2R Δ (π /180)  (2.47) 
 
2.6 Transition Curves 
A transition curve is a non-circular curve of varying radius which is introduced between a 
straight and a circular curve for the purpose of giving ease in ride and change of direction along 
the route (Figure 2.15). The primary purpose of the transition curve is to enable vehicle moving 
at high speeds to make the change from the tangent section to the curves section, in a safe and 
comfortable fashion. When a vehicle enters or leaves a circular curve of finite radius, it is 
subject to an outward centrifugal force which can cause the shifting away of the passengers 
and the driver. 
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Figure 2.15 A typical transition curve 

 
The transition curve can also be inserted between two branches of a compound or reverse curve. 
The transition from the straight line to the tangent to circular curve, and from the circular curve 
to the straight line should be gradual. The transition curve helps in obtaining a gradual increase 
of super-elevation from zero on the tangent to the required full amount on the circular curve. It 
avoids danger of derailment, side skidding or overturning or vehicles while moving, as well as 
avoids discomfort to the passengers.  
 
The most common types of transition curves are shown in Figures 2.16 and explained below. 
There are three types of transition curves commonly used: (i) a cubic parabola, (ii) a cubical 
spiral, and (iii) a lemniscate. The first two are used on railways and highways both, while the 
third one is used on highways only.   
 
(i) Cubic parabolic curve–In this curve, the rate of decrease of curvature is much low for 
deflection angles 4° to 9°, but beyond 9°, there is a rapid increase in the radius of curvature. It 
is mostly used in railways. The equation is: 
 
y = x3 / (6RL)          (2.48) 
 
Where y is the coordinate of any point, x is the distance measured along the tangent, R is the 
radius of curve, and Lis the length of curve 
 
(ii) Spiral curve– This an ideal transition curve. It is the most widely used curve as it can easily 
be set out with its rectangular co-ordinates. The radius of this curve is inversely proportional 
to length traversed. Hence, the rate of change of acceleration in this curve is uniform throughout 
its length. It is mostly used in railways. 
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Figure 2.16 Various types of transition curves 

 
(iii) Lemniscate curve– In this transition curve, radius decreases as the length increases, and 
hence there is a slight fall of the rate of gain of radial acceleration. It is mostly used in highways. 
It can be represented by the Bernoulli’s lemniscate curve: 
 
L = k √ (sin 2α)         (2.49) 
 
Where L is the length of polar distance of any point in meters, α is the polar deflection angle 
of that point in radians, and k is a constant 
 
A transition curve should fulfil the following conditions:  

(i) If should tangentially meet the tangent line as well as the circular curve.  
(ii) The curve should have infinite radius (i.e., zero curvature) at the origin. 
(iii)The rate of increase of curvature along the transition curve should be the same as that of 

increase of super-elevation.  
(iv) The length of the transition curve should be such that the full super-elevation is attained 

at the junction with the circular curve.  
(v) Its radius at the junction with the circular curve is equal to that of circular curve.  

 
2.6.1  Super-elevation or Cant 
When a vehicle passes from a straight line to a curve line, in addition to its own weight, a 
centrifugal force acts on it, as shown in Figure 2.17. Both the forces act through the centre of 
gravity of vehicle. The centrifugal force acts horizontally and tends to push the vehicle away 
from the centre or road. This is because there is no component force to counter balance this 
centrifugal force. To counteract this effect, outer edge of the curve is elevated or raised by a 
small amount as compared to the inner one. This raising of the outer edge of curve is called 
super-elevation or cant. The amount of super-elevation will depend upon on several factors, 
such as the speed of the vehicle and radius of the curve.  
 


