
Chapter 24: Vector Space

Introduction
The concept of vector spaces provides a unifying structure for various 
mathematical and engineering problems involving systems of linear equations, 
transformations, and functions. In civil engineering, vector spaces find applications 
in structural analysis, finite element methods, and fluid dynamics. Understanding 
the properties of vector spaces enables engineers to model and solve complex 
physical systems efficiently.

This chapter introduces the foundational ideas of vector spaces, subspaces, linear 
combinations, span, linear independence, basis, and dimension—essential 
components for higher-level problem-solving in engineering.

24.1 Definition of Vector Space
A vector space (also called a linear space) over a field F (usually the field of real 
numbers ℝ) is a set V equipped with two operations:

 Vector addition: +:V ×V →V

 Scalar multiplication: ⋅ :F×V→V

such that the following axioms hold for all u , v ,w∈V  and all scalars a ,b∈F :

Axioms of Vector Space:
1. Closure under addition: u+v∈V

2. Commutativity of addition: u+v=v+u

3. Associativity of addition: (u+v)+w=u+(v+w)

4. Existence of additive identity: There exists a vector 0∈V  such that v+0=v

5. Existence of additive inverse: For each v∈V , there exists −v∈V  such that 
v+(−v )=0

6. Closure under scalar multiplication: a ⋅ v∈V

7. Distributivity over vector addition: a ⋅(u+v)=a ⋅u+a ⋅ v
8. Distributivity over scalar addition: (a+b)⋅ v=a⋅ v+b ⋅ v

9. Associativity of scalar multiplication: a ⋅(b ⋅ v)=(ab)⋅v



10.Identity scalar multiplication: 1 ⋅v=v, where 1 is the multiplicative identity 
in F.

24.2 Examples of Vector Spaces
1. ℝⁿ (n-dimensional real space)

Each element is an n-tuple: (x1 , x2 ,… ,xn) with real components.

2. Set of all real-valued functions

Let V be the set of all real-valued functions f :ℝ→ℝ. Then V is a vector space with 
function addition and scalar multiplication.

3. Set of m×n real matrices

The set Mm×n(R) of all m×n matrices forms a vector space under matrix addition 
and scalar multiplication.

4. Set of polynomials of degree  n≤

The set of all polynomials with real coefficients and degree  n is a vector space.≤

24.3 Subspace
A subspace of a vector space V is a non-empty subset W of V that is itself a vector 
space under the same operations.

Conditions for Subspace:

Let W⊆V . Then W  is a subspace if:

1. 0∈W

2. u , v∈W⇒u+v∈W

3. a∈R ,v∈W⇒a ⋅ v∈W

Example:

Let V=R3 and W={(x , y , z )∈ R3 : x+ y+z=0 }. Then W  is a subspace of R3.



24.4 Linear Combination and Span
 A linear combination of vectors v1 , v2 ,…,vk∈V  is an expression of the form

a1 v1+a2 v2+⋯+ak vk

 where a i∈R.

 The span of vectors {v1 , v2,…,v k}, denoted by

span {v1,…,vk }

 is the set of all linear combinations of v1 ,…,vk.

 Span is always a subspace of V.

24.5 Linear Independence
A set of vectors {v1 , v2,…,v k}⊆V  is said to be linearly independent if

a1 v1+a2 v2+⋯+ak vk=0⇒a1=a2=⋯=ak=0

If there exist scalars not all zero satisfying the above equation, then the vectors are 
linearly dependent.

Example:

Vectors (1 ,2) ,(2 ,4)∈R2 are linearly dependent, since 2(1 ,2)−(2 ,4)=(0 ,0)

24.6 Basis
A basis of a vector space V is a set of linearly independent vectors that spans V.

 If B={v1 ,…,vn} is a basis of V, then every element v∈V  can be uniquely 
written as a linear combination of the vectors in B.

Example:

The standard basis of R3 is {(1 ,0 ,0) ,(0 ,1 ,0),(0 ,0 ,1)}



24.7 Dimension
The dimension of a vector space V is the number of vectors in any basis of V.

 If V  has a finite basis with n vectors, then dim (V )=n

 If no finite basis exists, V  is called infinite-dimensional

Examples:
 dim (Rn)=n

 The space of all polynomials of degree  2 has dimension 3.≤

24.8 Coordinates of a Vector
Given a basis B={v1 , v2 ,…, vn} of a vector space V, any vector v∈V  can be written 
uniquely as:

v=a1 v1+a2 v2+⋯+an vn

The tuple (a1 , a2 ,…,an) is called the coordinate vector of v with respect to the basis 
B.

24.9 Row Space, Column Space, and Null Space
Let A be an m×n matrix.

 The row space of A: span of the row vectors.
 The column space of A: span of the column vectors.
 The null space of A: set of all solutions x∈ Rn to A x=0

Each of these is a subspace of a suitable vector space.

24.10 Rank and Nullity
 The rank of a matrix A: dimension of the column space.
 The nullity of A: dimension of the null space.

Rank-Nullity Theorem:
Rank (A)+Nullity (A)=n



Where A is an m×n matrix.

24.11 Applications in Civil Engineering
Structural Analysis:

Vector spaces model displacement vectors, forces, and deformations in structures 
like beams and frames.

Finite Element Methods (FEM):

The basis functions used in FEM form a vector space. Understanding basis and 
dimension helps in choosing appropriate shape functions.

Optimization and Linear Systems:

Design optimization problems and systems of equations derived from physical 
laws are best handled using vector space theory.

24.12 Vector Space Isomorphism
Two vector spaces V  and W  over the same field are isomorphic if there exists a 
bijective linear map (isomorphism) T :V →W  such that:

T (a v+bw)=aT (v)+bT (w)

for all v ,w∈V  and a ,b∈R.

Significance:
 Isomorphic vector spaces are structurally identical.
 If dimV=dimW=n, then V ≅Rn.

24.13 Direct Sum of Subspaces
Let V  be a vector space, and let U  and W  be subspaces of V .

We say:

V=U⊕W



if:

 Every element v∈V  can be uniquely written as v=u+w, where u∈U ,w∈W

 U∩W={0 }

This helps break down complex vector spaces into simpler components.

24.14 Quotient Vector Spaces
Let V  be a vector space and W⊆V  a subspace.

The quotient space V /W  is the set of equivalence classes:

V /W={v+W :v∈V }

Each element of V /W  is a coset of the form v+W . The operations are:

 (v+W )+(u+W )=(v+u)+W
 a (v+W )=(a v)+W

Quotient spaces are critical in differential equations, numerical analysis, and finite 
element error estimates.

24.15 Dual Space
Given a vector space V , the dual space V ¿ is the set of all linear functionals from 
V  to R:

V ¿={f :V→R ∣ f is linear }

If V  is finite-dimensional with basis {v1 ,. . . , vn}, then V ¿ also has dimension n.

In engineering, dual spaces are used in stress-strain analysis, where stresses are 
linear functionals acting on displacement fields.

24.16 Worked Examples
Example 1: Determining Subspace

Let W={(x , y , z )∈ R3 : x+2 y+3 z=0 }. Show that W  is a subspace of R3.



Solution:

1. Zero vector: (0 ,0 ,0)∈W  since 0+2(0)+3(0)=0

2. Closed under addition:

(x1+ x2)+2( y1+ y2)+3 (z1+z2)=(x1+2 y1+3 z1)+(x2+2 y2+3 z2)=0+0=0

3. Closed under scalar multiplication:

a (x+2 y+3 z )=a ⋅0=0

Hence, W  is a subspace.

Example 2: Basis and Dimension

Find a basis for W={(x , y , z )∈ R3 : x+ y+z=0 } and its dimension.

Solution:

Let x=− y− z. Then any vector in W  is of the form:

(− y−z , y , z )= y (−1,1 ,0)+z (−1 ,0 ,1)

So the basis is:

{(−1 ,1 ,0) ,(−1,0 ,1)}

Dimension = 2.

24.17 Orthogonality in Vector Spaces
Two vectors u , v∈Rn are orthogonal if their dot product is zero:

u ⋅v=0

A set of vectors is orthogonal if every pair in the set is orthogonal. If they are also 
unit vectors, the set is orthonormal.

Orthonormal Basis:

A basis {v1 , v2,…,vn } is orthonormal if:

v i⋅ v j={1 i= j
0 i ≠ j



Useful in numerical methods (e.g., Gram-Schmidt process) and matrix 
decompositions (e.g., QR factorization).

24.18 Gram-Schmidt Orthogonalization
Given a set of linearly independent vectors {v1 , v2, . . ., vn}, this process constructs an 
orthonormal basis {u1 , u2 , .. . ,un} such that:

u1=
v1

∥v1∥
,u2=

v2−proju1
(v2)

∥ v2−proju1
(v2)∥

,…

where:

proju(v )=
v ⋅ u
u⋅u

u

24.19 Visual Insights
To help visualize vector spaces:

 ℝ²: A plane with vectors as arrows from the origin.
 Subspaces: Lines through the origin or planes in higher dimensions.
 Basis: Minimum set of independent vectors needed to describe all vectors.
 Null Space: The set of vectors mapped to zero — visualized as a flat region.
 Column Space: Span of column vectors — represents the range of 

transformation.

(Diagrams should accompany these explanations in your e-book for better 
comprehension.)

24.20 MATLAB/Python Implementation (Optional Section)
For engineering students using computational tools:

Finding Rank and Nullity in Python:
import numpy as np
A = np.array([[1, 2, 3], [2, 4, 6], [1, 0, 1]])
rank = np.linalg.matrix_rank(A)



null_space_dim = A.shape[1] - rank
print("Rank:", rank)
print("Nullity:", null_space_dim)

This section can help students apply vector space concepts to real computations in 
structural design, simulations, or data modeling.
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