Chapter 13: Normal Modes of Vibration

Introduction

In earthquake engineering and structural dynamics, understanding how structures
respond to vibrational forces is crucial. One of the most fundamental concepts
in this area is normal modes of vibration. These are the natural ways in
which a system tends to oscillate in the absence of external forces or damping.
Each normal mode is associated with a specific frequency—called a natural
frequency—and a unique deformation shape—called a mode shape.

Structures like buildings and bridges, when subjected to dynamic loads such as
seismic waves, exhibit complex motion. However, this complex motion can be
broken down into a combination of simpler vibrational patterns—normal modes.
This chapter delves deep into the theoretical basis, mathematical formulation,
physical significance, and practical applications of normal modes in multi-degree-
of-freedom (MDOF) systems, which are common in real-world structures.

13.1 Multi-Degree-of-Freedom (MDOF) Systems
¢ Definition and examples of MDOF systems
o Mathematical modeling of MDOF structures (e.g., multi-storey frames)

¢ Equations of motion in matrix form:

[MI{X} + [K]{X} = {F(t)}
e where:

— [M] = mass matrix

— [K] = stiffness matrix

— {X} = displacement vector

— {F(t)} = external force vector

o Coupled differential equations and challenges in solving them directly

13.2 Concept of Mode Shapes and Natural Frequencies
¢ Definition of natural frequency and mode shape

o Physical interpretation of normal modes: oscillation patterns independent
of each other

¢ Mode shapes as eigenvectors and natural frequencies as eigenvalues



e Orthogonality of mode shapes with respect to mass and stiffness matrices

e where:

— [®] = modal matrix (mode shapes as columns)
— [A] = diagonal matrix of squared natural frequencies
— [I] = identity matrix

13.3 Free Vibration Analysis of MDOF Systems

e Assumption of no damping and no external force

¢ Solution using harmonic motion:

{X (1)} = {¢} sin(wt)

¢ Substituting into equations of motion leads to:

([K] - *[M]){¢} =0
« This forms an eigenvalue problem for w? and {¢}
e Procedure:

a. Formulate [M] and [K]
b. Solve characteristic equation det([K] — w?[M]) =0
c. Obtain natural frequencies w,, and corresponding mode shapes {¢,, }

13.4 Properties of Normal Modes
o Orthogonality Property: Mode shapes are orthogonal w.r.t. both [M]

and [K]
{e}"[M{o;} =0, i#j

{0} [K{¢;} =0, i#j

¢ Normalization: Mode shapes can be scaled to satisfy unit modal mass:

{6} [M){¢n} =1



Modal Participation Factors: Indicate how much a mode contributes
to the total response

Completeness: Any dynamic response of a linear system can be expressed
as a linear combination of its normal modes

13.5 Modal Analysis Technique

Objective: To decouple coupled differential equations using modal trans-
formation

Define modal coordinates:

{X} = [e[{g}
where {¢} = modal coordinate vector

Substituting into the original equation:

[M][®{g} + [K][®K{q} = {F(t)}
Using orthogonality properties:

{d} + [Al{q} = [@]"{F (1)}
Result: A set of uncoupled single-degree-of-freedom (SDOF) equations

Each equation can be solved independently:

Gn + WZQn = Fn(t)

The total response:

(X)) = {ou}an®)

13.6 Application in Earthquake Engineering

Response Spectrum Analysis: Estimation of maximum response using
modal properties

Seismic Design: Mode shapes guide where reinforcements and base
isolators are most needed

Modal Combination Methods:



— SRSS (Square Root of the Sum of the Squares)
— CQC (Complete Quadratic Combination)
— Useful when modes are closely spaced

o Simplification in Multi-Storey Buildings:

— First few modes dominate the response
— Higher modes have negligible influence in low-rise buildings

13.7 Computational Aspects

o Use of matrix algebra and numerical eigenvalue solvers

o Application of software tools (e.g., MATLAB, SAP2000, ETABS)

o Need for accurate [M] and [K] matrices

o Sensitivity of natural frequencies to mass and stiffness distributions

13.8 Examples and Case Studies

o Two-degree-of-freedom system: Detailed step-by-step computation of
natural frequencies and mode shapes

e Three-storey shear building: Modal analysis, participation factors, and
reconstruction of time response

e« Comparison with real earthquake data: Validation of modal analysis
predictions

13.9 Effect of Damping on Mode Shapes
¢ Damped Systems vs. Undamped Systems:

— In undamped systems, mode shapes are purely real and orthogonal.
— In damped systems, damping may couple the modes, especially if
damping is non-proportional.

¢ Types of Damping;:

— Classical (Proportional) Damping;:

[C] = a[M] + BIK]
¢ Leads to uncoupled modal equations.

o Non-Classical (Non-Proportional) Damping: Leads to complex
modes and complex eigenvalues.

¢ Modal Damping Ratios:



— Defined for each mode:

Cn

Gn = 2V k,my,
e (, < 1: Underdamped

e (n = 1: Critically damped

e (, > 1: Overdamped

13.10 Mode Truncation and Modal Superposition
e Mode Truncation:

— In practice, only a few dominant modes are sufficient to approximate
structural response.

— Higher modes are neglected if their participation is negligible.

— Error introduced by truncation is evaluated using modal mass
participation or energy contribution.

e« Modal Superposition:

— Total system response obtained by summing individual modal re-
sponses.

(X}~ Z{@z}%(ﬂ where r < N

e Criteria for Acceptable Truncation:

— At least 90-95% of total mass participation should be captured.
— Dominant modes in the direction of excitation are prioritized.

13.11 Coupled Modes in Asymmetric and Torsional Systems

e Structures with unsymmetrical mass or stiffness exhibit coupled transla-
tional and rotational modes.

o Torsional Modes:

— Significant in irregular buildings and structures with eccentric
mass/stiffness.
— Dangerous due to stress concentration and damage in corners.

o Example:

— Plan-asymmetric buildings showing torsionally coupled mode
shapes.



— Importance in seismic design due to uneven drift and base shear.

13.12 Experimental Determination of Mode Shapes
e Modal Testing Methods:

— Impact Hammer Testing
— Shaker Testing
— Ambient Vibration Testing

¢ Measurement Tools:

— Accelerometers, laser vibrometers, and strain gauges.
o Frequency Response Function (FRF):

— Used to identify natural frequencies and mode shapes.
o Operational Modal Analysis (OMA):

— Conducted under ambient (natural) excitation like wind or micro-
tremors.
— Useful for existing buildings and bridges without artificial excitation.

13.13 Importance of Mode Shapes in Seismic Design Codes
¢ Building Code Requirements:
— IS 1893 (Part 1): Modal analysis is mandatory for:

* Buildings > 40 m height in seismic zones II-V
* Buildings with irregular configuration

e Design Implications:

— Placement of shear walls, braces, and dampers based on mode shape
patterns.

— Floor accelerations and inter-storey drift predictions rely on accurate
mode shapes.

¢ Dynamic Load Distribution:

— Base shear distribution across storeys depends on modal participation.
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