
Chapter 2: Homogeneous Linear Equations of 
Second Order

Introduction
In Civil Engineering, the behavior of structural components such as beams, 
bridges, and buildings often involves second-order differential equations. These 
equations arise in the analysis of mechanical vibrations, heat conduction, fluid 
flow, and elasticity. Specifically, homogeneous linear second-order differential 
equations are central to mathematical modeling in these systems. This chapter 
explores the theory and solution methods of such equations, providing a 
foundation for understanding real-world engineering phenomena.

2.1 Definition
A second-order linear homogeneous differential equation has the general 
form:

a (x) d
2 y
d x2

+b(x ) d y
d x

+c (x ) y=0

Where:

 y= y (x) is the unknown function of the independent variable x
 a (x) , b(x ), c (x ) are given functions of x
 a (x)≠0

If a (x) , b(x ), c (x ) are constants, the equation is said to have constant coefficients.

2.2 Homogeneous Linear Equations with Constant 
Coefficients
The most common and solvable form in engineering applications is:

a
d2 y
d x2

+b d y
d x

+c y=0



Dividing through by a (assuming a≠0):

d2 y
d x2

+ p d y
d x

+q y=0

Where:

 p=b
a

,

 q= c
a

2.3 Auxiliary Equation and General Solution
To solve:

d2 y
d x2

+ p d y
d x

+q y=0

We assume a solution of the form:

y=em x

Substituting into the differential equation:

m2 em x+ pmemx+qem x=0

emx (m2+ pm+q)=0

Since emx ≠0, the auxiliary equation (characteristic equation) is:

m2+p m+q=0

The nature of the roots of the auxiliary equation determines the form 
of the general solution.

2.4 Case I: Real and Distinct Roots
If the auxiliary equation has two distinct real roots m1 and m2, then:

y (x )=C1e
m1x+C2e

m2x

Where C1,C2 are arbitrary constants determined by initial/boundary conditions.



2.5 Case II: Real and Repeated Roots
If the roots are real and equal, say m1=m2=m, then:

y (x )=(C1+C2 x)e
mx

This accounts for the multiplicity of the solution space.

2.6 Case III: Complex Roots
If the roots are complex conjugates:

m=α ±i β

Then the general solution becomes:

y (x )=eα x (C1cos β x+C2 sin β x)

This form is particularly useful in modeling damped vibrations or oscillatory 
motion.

2.7 Examples
Example 1: Distinct Real Roots

Solve:

d2 y
d x2

−5
d y
d x

+6 y=0

Solution: Auxiliary equation: m2−5m+6=0 Roots: m=2 ,3 General solution:

y (x )=C1e
2x+C2e

3x

Example 2: Repeated Roots

Solve:

d2 y
d x2

−4
d y
d x

+4 y=0

Solution: Auxiliary equation: m2−4m+4=0⇒¿ Roots: m=2 (repeated) Solution:



y (x )=(C1+C2 x)e
2x

Example 3: Complex Roots

Solve:

d2 y
d x2

+4 y=0

Solution: Auxiliary equation: m2+4=0⇒m=±2 i General solution:

y (x )=C1cos2 x+C2 sin 2x

2.8 Application in Civil Engineering
1. Vibrations of Beams

The deflection of a simply supported beam subject to dynamic loading can be 
modeled as:

E I
d4 y
d x4

+m d
2 y
d t2

=0

Under certain simplifications (e.g., uniform beam, time-independent loading), this 
reduces to a second-order homogeneous linear equation.

2. Thermal Analysis

Temperature distribution in rods or walls can lead to equations of the form:

d2T
d x2

− λT=0

Which is a second-order homogeneous equation.

3. Structural Mechanics

In analyzing column stability (Euler's buckling), we derive:

d2 y
d x2

+ P
E I

y=0

Which again is a linear homogeneous second-order differential equation.



2.9 Exercises

1. Solve d
2 y
d x2

+7 d y
d x

+12 y=0

2. Solve d
2 y
d x2

+6 d y
d x

+9 y=0

3. Solve d
2 y
d x2

−10 y=0

4. A structure’s vibration is modeled as d
2 y
d x2

+16 y=0. Find its solution.

5. Prove that the general solution of a second-order linear homogeneous ODE 
always contains two arbitrary constants.

Certainly! Here's additional content for your e-book right after Section 2.9 
Exercises, continuing the depth and keeping it engaging for B.Tech Civil 
Engineering students. This content includes solved exercises, graphical 
interpretation, numerical methods overview, and real-world engineering 
problems.

2.10 Solved Exercises
Exercise 1

Problem: Solve d
2 y
d x2

+7 d y
d x

+12 y=0

Solution: Auxiliary equation:

m2+7m+12=0

Solving:

m=−7±√49−48
2

=−7±1
2

⇒m1=−3 ,m2=−4

Hence, the general solution is:

y (x )=C1e
−3 x+C2 e

− 4 x



Exercise 2

Problem: Solve d
2 y
d x2

+6 d y
d x

+9 y=0

Solution: Auxiliary equation:

m2+6m+9=0⇒ ¿

General solution:

y (x )=(C1+C2 x)e
−3 x

Exercise 3

Problem: Solve d
2 y
d x2

−10 y=0

Solution: Auxiliary equation:

m2−10=0⇒m=±√10

General solution:

y (x )=C1e
√10 x+C2 e

− √10 x

2.11 Graphical Interpretation of Solutions
Understanding the shape and behavior of the solution curves is essential for 
engineering intuition:

Type of Roots Solution Form Graphical Behavior
Real and Distinct y=C1 e

m1 x+C2 e
m2x Exponential 

growth/decay (non-
oscillatory)

Real and Repeated y=(C1+C2 x )e
m x Exponential decay 

with linear 
modification

Complex Roots y=eα x(C1 cos β x+C2sin β x)Oscillatory (sine-
wave like), possibly 
damped



 Engineers use these plots to interpret phenomena like 👉 damped oscillations, 
stability, and resonance in systems.

2.12 Numerical Methods Overview
In real-life engineering scenarios, it is not always possible to find exact solutions. 
When dealing with:

 Complicated boundary conditions
 Nonlinear extensions
 Irregular material properties

... we resort to numerical techniques.

Euler’s Method (Basic Idea)

Used for solving initial value problems:

Given:

d2 y
d x2

= f (x , y , y ′) , y (x0)= y0 , y
′ (x0)= y0′

We convert the second-order ODE into a system of first-order ODEs and apply 
step-by-step approximations.

Though basic, Euler's method is foundational to understanding advanced 
techniques like:

 Runge-Kutta Methods
 Finite Difference Methods (FDM)
 Finite Element Methods (FEM) – very important in civil engineering!

2.13 Real-World Civil Engineering Applications
1. Beam Deflection under Load

Using the Euler-Bernoulli Beam Theory:

E I
d4 y
d x4

=q (x)



In simplified cases with symmetric loadings, this reduces to a second-order 
equation involving slope and curvature:

d2 y
d x2

+k y=0

2. Column Buckling (Euler's Buckling Theory)

For a column under axial load P:

d2 y
d x2

+ P
E I

y=0

This helps determine the critical load beyond which the structure becomes 
unstable.

2.14 Key Engineering Insights
 Boundary conditions dictate physical behavior — for example, fixed ends 

or free ends of a beam.
 Natural frequencies arise from complex roots — important in earthquake 

analysis.
 Solution behavior changes drastically based on sign and nature of 

coefficients p and q.

2.15 Summary Points
 A second-order linear homogeneous equation has the general form:

d2 y
d x2

+ p d y
d x

+q y=0

 Solution behavior depends on the discriminant D=p2−4q

 Real-life engineering models often lead to such equations

 Numerical methods are essential when exact solutions are not feasible

 Understanding solution graphs aids in practical design and safety analysis
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