
Chapter 12: Exception Handling

Introduction

In the world of programming, errors are inevitable. Programs often deal with unpredictable

inputs, system-level interruptions, or logical faults. Without proper handling, such errors can

cause the program to crash or behave abnormally. Exception Handling provides a structured

mechanism to detect, handle, and recover from runtime errors in a clean and manageable way.

Exception handling is crucial for building robust, reliable, and maintainable software. Modern

programming languages like Java, C++, Python, and C# offer built-in support for exception

handling. In this chapter, we will focus primarily on Java-style exception handling, as it is the

standard for many object-oriented and enterprise-level applications.

12.1 What is an Exception?

An exception is an event that occurs during the execution of a program that disrupts the normal

flow of instructions.

Types of Errors

• Compile-time Errors: Syntax or semantic errors (e.g., missing semicolon, undeclared

variables).

• Runtime Errors: Errors that occur during execution (e.g., divide by zero, file not found).

• Logical Errors: Flaws in the algorithm or logic (e.g., incorrect output due to wrong

formula).

Exception vs. Error

• Exception: Recoverable condition (e.g., FileNotFoundException).

• Error: Serious issues (e.g., StackOverflowError, OutOfMemoryError) which are usually

not handled in the code.

12.2 Exception Hierarchy in Java
java.lang.Throwable
├── Error
│ └── e.g., OutOfMemoryError, StackOverflowError
└── Exception
 ├── Checked Exceptions
 │ └── e.g., IOException, SQLException
 └── Unchecked Exceptions (RuntimeException)
 └── e.g., NullPointerException, ArithmeticException

12.3 Need for Exception Handling
• Prevents abrupt termination.

• Increases code readability and maintainability.

• Allows centralized error management.

• Separates normal logic from error-handling logic.

12.4 Exception Handling Keywords

try

• Used to define a block of code to be tested for errors.

catch

• Handles the exception thrown by the try block.

finally

• A block that is always executed, regardless of exception occurrence.

throw

• Used to explicitly throw an exception.

throws

• Declares exceptions that a method may throw.

12.5 Basic Syntax
try {
 // Code that may throw an exception
} catch (ExceptionType name) {
 // Code to handle the exception
} finally {
 // Optional block that always executes
}

12.6 Checked vs Unchecked Exceptions

Checked Exceptions

• Checked at compile time.

• Must be either caught or declared using throws.

• Examples: IOException, SQLException.

Unchecked Exceptions

• Checked at runtime.

• Programmer's responsibility to avoid these.

• Examples: NullPointerException, ArithmeticException.

12.7 Multiple Catch Blocks
try {
 // Risky code
} catch (IOException e) {
 // Handle IO
} catch (ArithmeticException e) {
 // Handle Arithmetic
} catch (Exception e) {
 // Handle all other exceptions
}

• Catch from most specific to most general.

• Only one catch block executes per exception.

12.8 Nested try Blocks

You can have try blocks inside try blocks for localized exception handling.

try {
 try {
 // Nested risky code
 } catch (Exception e) {
 // Inner exception handling
 }
} catch (Exception e) {
 // Outer exception handling
}

12.9 finally Block
• Executes regardless of exception being thrown or not.

• Commonly used for cleanup activities (e.g., closing files, releasing resources).

try {
 // code
} catch (Exception e) {
 // handler
} finally {

 // always executes
}

12.10 throw Keyword

Used to manually throw an exception.

throw new ArithmeticException("Division by zero");

12.11 throws Keyword

Used in method declaration to propagate exceptions.

public void readFile() throws IOException {
 // code that may throw IOException
}

12.12 Custom Exceptions

You can define your own exception classes by extending the Exception class.

class AgeTooLowException extends Exception {
 public AgeTooLowException(String message) {
 super(message);
 }
}

Usage:

if (age < 18) {
 throw new AgeTooLowException("Age must be 18+");
}

12.13 Best Practices in Exception Handling
• Catch specific exceptions, not generic ones.

• Don’t suppress exceptions silently.

• Use finally for resource cleanup.

• Avoid using exceptions for normal control flow.

• Log exception details (stack trace).

• Create meaningful custom exceptions.

12.14 Exception Propagation

If an exception is not caught in the current method, it propagates to the calling method.

void methodA() {
 methodB();
}
void methodB() throws IOException {
 // throws exception
}

12.15 Common Exceptions in Java
Exception Name Type Description

ArithmeticException Unchecked Dividing by zero

NullPointerException Unchecked Object reference is null

ArrayIndexOutOfBounds Unchecked Invalid index access in an array

NumberFormatException Unchecked Invalid number conversion

FileNotFoundException Checked File doesn’t exist

IOException Checked General IO failure

12.16 Exception Handling in Other Languages (Brief Comparison)
Language Exception Handling

Java try-catch-finally, checked & unchecked

C++ try-catch-throw, no checked exceptions

Python try-except-finally, all are runtime exceptions

C# Similar to Java, no checked exceptions

Summary

Exception handling is an essential concept in advanced programming that allows developers to

gracefully manage runtime errors. By using constructs like try, catch, finally, throw, and

throws, developers can write robust and fault-tolerant code. Proper use of exception handling

improves code readability, maintainability, and user experience. Remember, exceptions should

be treated as exceptions, not as a substitute for logic control.

	Chapter 12: Exception Handling
	Introduction
	12.1 What is an Exception?
	Types of Errors
	Exception vs. Error

	12.2 Exception Hierarchy in Java
	12.3 Need for Exception Handling
	12.4 Exception Handling Keywords
	try
	catch
	finally
	throw
	throws

	12.5 Basic Syntax
	12.6 Checked vs Unchecked Exceptions
	Checked Exceptions
	Unchecked Exceptions

	12.7 Multiple Catch Blocks
	12.8 Nested try Blocks
	12.9 finally Block
	12.10 throw Keyword
	12.11 throws Keyword
	12.12 Custom Exceptions
	12.13 Best Practices in Exception Handling
	12.14 Exception Propagation
	12.15 Common Exceptions in Java
	12.16 Exception Handling in Other Languages (Brief Comparison)
	Summary

