Chapter 30: Eigenvectors

Introduction

Eigenvectors are fundamental in the study of linear transformations and systems of linear equations. In civil engineering, they are widely used in **structural analysis**, **vibration analysis**, **stability studies**, and **finite element methods**. Understanding eigenvectors and the corresponding eigenvalues helps civil engineers model physical phenomena such as **resonance**, **stress distribution**, and **buckling of columns**.

This chapter provides a thorough exploration of eigenvectors, starting from basic definitions to their applications in engineering problems.

30.1 Preliminaries

Let us consider a square matrix $A \in \mathbb{R}^{n \times n}$.

An eigenvector $\mathbf{x} \neq \mathbf{0}$ of matrix A is a non-zero vector that, when multiplied by the matrix A, yields a scalar multiple of itself:

$$A\mathbf{x} = \lambda \mathbf{x}$$

Here,

- x is the eigenvector,
- $\lambda \in \mathbb{R}$ (or \mathbb{C}) is the **eigenvalue** associated with \mathbf{x} ,
- A is a square matrix.

This equation means that the action of matrix A on vector \mathbf{x} is simply to stretch or compress (and possibly reverse) the vector without changing its direction.

-

30.2 Eigenvalue Problem

To find eigenvectors, we start by solving the **characteristic equation**:

$$A\mathbf{x} = \lambda \mathbf{x} \Rightarrow (A - \lambda I)\mathbf{x} = 0$$

This is a homogeneous system of equations, and for a non-trivial solution to exist (i.e., $\mathbf{x} \neq \mathbf{0}$), the coefficient matrix must be singular:

$$\det(A - \lambda I) = 0$$

This equation is called the **characteristic equation**, and its roots $\lambda_1, \lambda_2, \dots, \lambda_n$ are the **eigenvalues** of A.

30.3 Finding Eigenvectors

Once the eigenvalues λ_i are found, each corresponding **eigenvector** \mathbf{x}_i can be obtained by solving:

$$(A - \lambda_i I)\mathbf{x}_i = 0$$

This typically results in a system of linear equations, which can be solved using **Gaussian elimination** or **row-reduction**.

Example:

Let

$$A = \begin{bmatrix} 4 & 2 \\ 1 & 3 \end{bmatrix}$$

Step 1: Find characteristic equation

$$\det(A - \lambda I) = \begin{vmatrix} 4 - \lambda & 2 \\ 1 & 3 - \lambda \end{vmatrix} = (4 - \lambda)(3 - \lambda) - 2 = \lambda^2 - 7\lambda + 10$$
$$\Rightarrow \lambda^2 - 7\lambda + 10 = 0 \Rightarrow \lambda = 5, 2$$

Step 2: Find eigenvectors

For $\lambda = 5$:

$$(A-5I)\mathbf{x} = \begin{bmatrix} -1 & 2\\ 1 & -2 \end{bmatrix} \mathbf{x} = 0 \Rightarrow \text{Solve } -x+2y = 0 \Rightarrow x = 2y$$

Eigenvector
$$\mathbf{x}_1 = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$$
 (up to scalar multiple)

30.4 Properties of Eigenvectors

- 1. Linearly Independent Eigenvectors: If matrix A has n distinct eigenvalues, the corresponding eigenvectors are linearly independent.
- 2. Scaling: Eigenvectors are not unique. If \mathbf{x} is an eigenvector, so is $k\mathbf{x}$ for any non-zero scalar k.
- 3. **Diagonalization**: If A has n linearly independent eigenvectors, then it is **diagonalizable**:

$$A = PDP^{-1}$$

where

- D is a diagonal matrix with eigenvalues,
- P is a matrix whose columns are the eigenvectors of A.
- 4. **Symmetric Matrices**: All eigenvalues of a real symmetric matrix are **real**, and eigenvectors corresponding to distinct eigenvalues are **orthogonal**.

30.5 Geometric Interpretation

An eigenvector represents a **direction** in which a linear transformation acts as a simple scaling, and the corresponding eigenvalue represents the **scale factor**.

- If $\lambda > 1$: Stretching
- If $0 < \lambda < 1$: Compression
- If $\lambda = -1$: Reversal of direction
- If $\lambda = 0$: Maps to zero vector

This geometric view is especially useful in structural mechanics, where the deformation of elements can be studied using eigenvectors of stiffness or flexibility matrices.

30.6 Applications in Civil Engineering

1. Structural Analysis

In frame or truss analysis, eigenvectors represent **mode shapes** of vibration or deformation. These help determine how a structure might **fail** under dynamic loading.

2. Vibration Analysis

Solving the **eigenvalue problem** in mechanical systems gives the **natural** frequencies (**eigenvalues**) and the **mode shapes** (**eigenvectors**), helping engineers avoid **resonance**.

3. Stability and Buckling

Buckling of columns under axial loads leads to an eigenvalue problem where the **critical load** corresponds to the smallest eigenvalue and the **buckled shape** is the eigenvector.

4. Finite Element Method (FEM)

In FEM, global stiffness matrices and mass matrices are analyzed using eigenvectors to find **principal stress directions**, **displacement modes**, or **failure modes**.

30.7 Computational Methods

For large matrices (common in civil engineering simulations), eigenvectors are computed using numerical algorithms:

- Power Method: Estimates the dominant eigenvalue and its eigenvector.
- QR Algorithm: Used for computing all eigenvalues/eigenvectors.
- Jacobi Method: Effective for symmetric matrices.
- Lanczos Algorithm: For sparse symmetric matrices (e.g., in FEM).

Most civil engineering software like **SAP2000**, **ETABS**, or **ANSYS** internally solve large eigenvalue problems.

30.8 Orthogonality of Eigenvectors

If A is a **real symmetric matrix**, then:

- Eigenvectors corresponding to distinct eigenvalues are orthogonal.
- This orthogonality is useful in modal analysis, where orthogonal mode shapes simplify calculations.

Let $A = A^T$, and $\mathbf{x}_1, \mathbf{x}_2$ be eigenvectors with distinct eigenvalues λ_1, λ_2 , then:

$$\mathbf{x}_1^T \mathbf{x}_2 = 0$$

30.9 Complex Eigenvectors

For matrices with complex eigenvalues (e.g., in rotating systems), eigenvectors may also be complex. These are often used in **dynamic simulations** and **modal analysis** of rotating structures like turbines or bridges under wind loads.

30.10 Normalization of Eigenvectors

Eigenvectors are often normalized for ease of computation:

$$\mathbf{v}_{\mathrm{norm}} = \frac{\mathbf{v}}{\parallel \mathbf{v} \parallel}$$

Especially useful in software tools and numerical simulations.

30.11 Generalized Eigenvectors

In some cases, a matrix may not have enough linearly independent eigenvectors to be diagonalizable. This happens when it has **repeated eigenvalues** but lacks a full basis of eigenvectors. In such cases, we use **generalized eigenvectors**.

A generalized eigenvector of rank k satisfies:

$$(A - \lambda I)^k \mathbf{x} = 0$$
, but $(A - \lambda I)^{k-1} \mathbf{x} \neq 0$

These vectors help form a **Jordan canonical form**, which generalizes the diagonal form for matrices that are not diagonalizable.

Application in Civil Engineering

Generalized eigenvectors arise in **non-conservative systems** or **damped vibration problems**, where the governing matrices are not symmetric and do not admit diagonalization.

30.12 Eigenvector Decomposition of Systems

A matrix A with n linearly independent eigenvectors $\mathbf{v}_1, \dots, \mathbf{v}_n$ can be **decomposed** into:

$$A = VDV^{-1}$$

Where:

- $V = [\mathbf{v}_1, \dots, \mathbf{v}_n]$ is the modal matrix,
- $D = \operatorname{diag}(\lambda_1, \dots, \lambda_n)$ contains the **eigenvalues**.

Benefits in Civil Engineering:

- Simplifies analysis of systems of ODEs modeling structural vibration.
- Enables modal analysis, separating the problem into independent single-degree-of-freedom systems.

30.13 Modal Analysis in Structures

In large civil engineering structures (bridges, buildings, towers), it is often critical to understand how the structure behaves under dynamic loading. **Modal analysis** is used to find:

- Natural frequencies (eigenvalues),
- Mode shapes (eigenvectors).

Example:

Consider a discretized beam or building with mass M and stiffness K. The equation of motion is:

$$M\ddot{x} + Kx = 0$$

To solve this, assume $x(t) = \mathbf{v}e^{i\omega t}$, substitute into the equation:

$$(K - \omega^2 M)\mathbf{v} = 0$$

This is a **generalized eigenvalue problem**, with ω^2 as eigenvalues and **v** as eigenvectors (mode shapes).

Software like ETABS, STAAD.Pro, or ANSYS uses this process internally.

30.14 Principal Axes and Eigenvectors

In civil engineering, eigenvectors play a key role in determining the **principal** directions of stress and strain in materials.

Stress Tensor:

$$\sigma = \begin{bmatrix} \sigma_{xx} & \tau_{xy} \\ \tau_{xy} & \sigma_{yy} \end{bmatrix}$$

To find **principal stresses** and **principal directions**, solve the eigenvalue problem:

$$\sigma \mathbf{n} = \lambda \mathbf{n}$$

Where:

- λ : principal stresses (eigenvalues),
- n: directions of principal stresses (eigenvectors).

This is foundational in **strength of materials**, **soil mechanics**, and **concrete design**.

30.15 Eigenvectors in Stability of Structures

Buckling is a critical failure mode in columns. The **buckling load** corresponds to an eigenvalue of the system.

For a beam-column governed by:

$$EI\frac{d^4y}{dx^4} + P\frac{d^2y}{dx^2} = 0$$

where EI is flexural rigidity and P is axial load, the critical values of P (eigenvalues) and corresponding buckled shapes y(x) (eigenvectors/functions) are obtained by solving the boundary value problem.

In matrix structural analysis, this becomes a discrete eigenvalue problem:

$$(K - \lambda G)\mathbf{x} = 0$$

Where:

- K: stiffness matrix,
- ullet G: geometric stiffness matrix,
- λ : load multiplier (eigenvalue),
- x: buckling mode shape.

30.16 Use of Eigenvectors in Earthquake Engineering

Civil engineers use **eigenvector-based modal analysis** to study how buildings respond to earthquake ground motion. Key steps include:

- 1. Computing mass and stiffness matrices of the structure.
- 2. Solving the **eigenvalue problem** to get modes.
- 3. Performing response spectrum analysis using these modes.

The first few eigenvectors (modes) usually capture **most of the seismic response**, especially in low-rise or mid-rise structures.

30.17 Numerical Precision and Sensitivity

In practical computation, eigenvectors can be sensitive to:

- Small perturbations in matrix entries (important in ill-conditioned matrices).
- Floating-point roundoff errors, especially for nearly repeated eigenvalues.

Engineers must ensure:

- Use of double precision arithmetic,
- Validation of results via condition numbers,
- When needed, **orthogonalization techniques** like **Gram-Schmidt** to preserve numerical stability.

30.18 Software Tools for Eigenvector Analysis

Many engineering tools allow eigenvector computations, including:

- MATLAB: eig(A) or eigs(A)
- Python (NumPy/SciPy): numpy.linalg.eig, scipy.sparse.linalg.eigs
- ETABS/STAAD: Built-in modal analysis routines
- ANSYS: Modal, buckling, and harmonic analysis using eigenvector-based solvers