Chapter 30: Eigenvectors

Introduction

Eigenvectors are fundamental in the study of linear transformations and systems
of linear equations. In civil engineering, they are widely used in structural
analysis, vibration analysis, stability studies, and finite element meth-
ods. Understanding eigenvectors and the corresponding eigenvalues helps civil
engineers model physical phenomena such as resonance, stress distribution,
and buckling of columns.

This chapter provides a thorough exploration of eigenvectors, starting from basic
definitions to their applications in engineering problems.

30.1 Preliminaries
Let us consider a square matrix A € R"*™.

An eigenvector x # 0 of matrix A is a non-zero vector that, when multiplied
by the matrix A, yields a scalar multiple of itself:

Ax = Ax

Here,

e X is the eigenvector,
e X e R (or C) is the eigenvalue associated with x,
e A is a square matrix.

This equation means that the action of matrix A on vector x is simply to stretch
or compress (and possibly reverse) the vector without changing its direction.

30.2 Eigenvalue Problem

To find eigenvectors, we start by solving the characteristic equation:

Ax =X x=(A-Ax =0

This is a homogeneous system of equations, and for a non-trivial solution
to exist (i.e., x # 0), the coefficient matrix must be singular:

det(A — AI) =0



This equation is called the characteristic equation, and its roots A1, Ao, ..., A,
are the eigenvalues of A.

30.3 Finding Eigenvectors

Once the eigenvalues \; are found, each corresponding eigenvector x; can be
obtained by solving;:

(A - )\iI)Xi =0

This typically results in a system of linear equations, which can be solved using
Gaussian elimination or row-reduction.

Example:

Let

4 2
=[]
Step 1: Find characteristic equation

4—-A 2

det(A—)J):‘ sy

‘:(4—)\)(3—)\)—2:)\2—7)\—#10

=M -—TA+10=0=>X=5,2
Step 2: Find eigenvectors
For A = 5:

(A=5D)x = {_11 _22]x:0:>Solve —x4+2y=0=>2=2y

2} (up to scalar multiple)

Eigenvector x; = [1




30.4 Properties of Eigenvectors

1. Linearly Independent Eigenvectors: If matrix A has n distinct eigen-
values, the corresponding eigenvectors are linearly independent.

2. Scaling: Eigenvectors are not unique. If x is an eigenvector, so is kx for
any non-zero scalar k.

3. Diagonalization: If A has n linearly independent eigenvectors, then it is
diagonalizable:

A=PDpP!

where

e D is a diagonal matrix with eigenvalues,
e P is a matrix whose columns are the eigenvectors of A.

4. Symmetric Matrices: All eigenvalues of a real symmetric matrix are real,
and eigenvectors corresponding to distinct eigenvalues are orthogonal.

30.5 Geometric Interpretation

An eigenvector represents a direction in which a linear transformation acts as
a simple scaling, and the corresponding eigenvalue represents the scale factor.

o If A > 1: Stretching

e If 0 < A < 1. Compression

e If A = —1: Reversal of direction
e If A =0: Maps to zero vector

This geometric view is especially useful in structural mechanics, where the
deformation of elements can be studied using eigenvectors of stiffness or flexibility
matrices.

30.6 Applications in Civil Engineering
1. Structural Analysis

In frame or truss analysis, eigenvectors represent mode shapes of vibration or
deformation. These help determine how a structure might fail under dynamic
loading.



2. Vibration Analysis

Solving the eigenvalue problem in mechanical systems gives the natural
frequencies (eigenvalues) and the mode shapes (eigenvectors), helping
engineers avoid resonance.

3. Stability and Buckling

Buckling of columns under axial loads leads to an eigenvalue problem where the
critical load corresponds to the smallest eigenvalue and the buckled shape is
the eigenvector.

4. Finite Element Method (FEM)

In FEM, global stiffness matrices and mass matrices are analyzed using eigen-
vectors to find principal stress directions, displacement modes, or failure
modes.

30.7 Computational Methods

For large matrices (common in civil engineering simulations), eigenvectors are
computed using numerical algorithms:

e Power Method: Estimates the dominant eigenvalue and its eigenvector.
¢« QR Algorithm: Used for computing all eigenvalues/eigenvectors.

e Jacobi Method: Effective for symmetric matrices.

o Lanczos Algorithm: For sparse symmetric matrices (e.g., in FEM).

Most civil engineering software like SAP2000, ETABS, or ANSYS internally
solve large eigenvalue problems.

30.8 Orthogonality of Eigenvectors
If A is a real symmetric matrix, then:

o FEigenvectors corresponding to distinct eigenvalues are orthogonal.
e This orthogonality is useful in modal analysis, where orthogonal mode
shapes simplify calculations.

Let A= AT, and x1,X» be eigenvectors with distinct eigenvalues A1, A2, then:

X’{‘Xg =0




30.9 Complex Eigenvectors

For matrices with complex eigenvalues (e.g., in rotating systems), eigenvectors
may also be complex. These are often used in dynamic simulations and
modal analysis of rotating structures like turbines or bridges under wind loads.

30.10 Normalization of Eigenvectors

Eigenvectors are often normalized for ease of computation:

v

Vinorm = m

Especially useful in software tools and numerical simulations.

30.11 Generalized Eigenvectors

In some cases, a matrix may not have enough linearly independent eigenvectors
to be diagonalizable. This happens when it has repeated eigenvalues but lacks
a full basis of eigenvectors. In such cases, we use generalized eigenvectors.

A generalized eigenvector of rank k satisfies:

(A= XD*x =0, but (A—-A)*"1x#0

These vectors help form a Jordan canonical form, which generalizes the
diagonal form for matrices that are not diagonalizable.

Application in Civil Engineering

Generalized eigenvectors arise in non-conservative systems or damped
vibration problems, where the governing matrices are not symmetric and do
not admit diagonalization.

30.12 Eigenvector Decomposition of Systems

A matrix A with n linearly independent eigenvectors vi,..., v, can be decom-
posed into:

A=VvDV!

Where:



V =[vi,...,v,] is the modal matrix,
o D =diag(A1,...,\,) contains the eigenvalues.

Benefits in Civil Engineering:

e Simplifies analysis of systems of ODEs modeling structural vibration.
¢ Enables modal analysis, separating the problem into independent
single-degree-of-freedom systems.

30.13 Modal Analysis in Structures

In large civil engineering structures (bridges, buildings, towers), it is often
critical to understand how the structure behaves under dynamic loading. Modal
analysis is used to find:

o Natural frequencies (eigenvalues),
o Mode shapes (eigenvectors).
Example:

Consider a discretized beam or building with mass M and stiffness K. The
equation of motion is:

Mi+ Kxr=0

To solve this, assume z(t) = ve™?, substitute into the equation:

(K —w?*M)v =0

This is a generalized eigenvalue problem, with w? as eigenvalues and v as
eigenvectors (mode shapes).

Software like ETABS, STAAD.Pro, or ANSYS uses this process internally.

30.14 Principal Axes and Eigenvectors

In civil engineering, eigenvectors play a key role in determining the principal
directions of stress and strain in materials.



Stress Tensor:
o= Ozx Ty
Tzy Oyy

To find principal stresses and principal directions, solve the eigenvalue
problem:

on = \n

Where:

e \: principal stresses (eigenvalues),
o n: directions of principal stresses (eigenvectors).

This is foundational in strength of materials, soil mechanics, and concrete
design.

30.15 Eigenvectors in Stability of Structures

Buckling is a critical failure mode in columns. The buckling load corresponds
to an eigenvalue of the system.

For a beam-column governed by:
dy = d%
EFl—+P— =0
da? * dx?

where ET is flexural rigidity and P is axial load, the critical values of P (eigen-
values) and corresponding buckled shapes y(z) (eigenvectors/functions) are
obtained by solving the boundary value problem.

In matrix structural analysis, this becomes a discrete eigenvalue problem:

(K-XG)x=0

Where:

o K: stiffness matrix,

e G: geometric stiffness matrix,
o X: load multiplier (eigenvalue),
e x: buckling mode shape.




30.16 Use of Eigenvectors in Earthquake Engineering

Civil engineers use eigenvector-based modal analysis to study how buildings
respond to earthquake ground motion. Key steps include:

1. Computing mass and stiffness matrices of the structure.
2. Solving the eigenvalue problem to get modes.
3. Performing response spectrum analysis using these modes.

The first few eigenvectors (modes) usually capture most of the seismic re-
sponse, especially in low-rise or mid-rise structures.

30.17 Numerical Precision and Sensitivity
In practical computation, eigenvectors can be sensitive to:

e Small perturbations in matrix entries (important in ill-conditioned
matrices).

¢ Floating-point roundoff errors, especially for nearly repeated eigenval-
ues.

Engineers must ensure:

¢ Use of double precision arithmetic,

¢ Validation of results via condition numbers,

e When needed, orthogonalization techniques like Gram-Schmidt to
preserve numerical stability.

30.18 Software Tools for Eigenvector Analysis

Many engineering tools allow eigenvector computations, including;:

e MATLAB: eig(A) or eigs(A)

o Python (NumPy/SciPy): numpy.linalg.eig, scipy.sparse.linalg.eigs

« ETABS/STAAD: Built-in modal analysis routines
¢ ANSYS: Modal, buckling, and harmonic analysis using eigenvector-based
solvers
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