
Design and Analysis of Algorithms, Chennai Mathematical Institute
Prof. Madhavan Mukund

Department of Computer Science and Engineering,

Week - 08

Module - 06

Lecture - 55

Intractability: Checking Algorithms

Most of this course has been about identifying efficient solution to problems. But it is

also important to realize that there are some situations, where no known efficient

solutions exits, and we able to recognize this, so that we do not fruitlessly try to look for

solutions, where the problem is known to be hard to solve. So, let us look at some issues

involving intractability.

(Refer Slide Time: 00:24)

So, many of the problems that we have seen, we are trying to search through a number of

possibilities to arrive as some kind of optimum combination. The actual search space is

exponential, if we are looking for shortest paths, there are an exponential number of

paths, if we are looking for a minimum cost spanning tree, there are an exponential

number of such spanning trees to search through.

We looking for the maximum flow, we have many different ways of adding and

subtracting flow along edges. So, if you look at all possible flows, all possible paths, all

possible spanning trees and then choose the optimum, this will be a Brute force solution

which would take exponential time. When we have a polynomial time algorithm, we are

712

actually cutting through the exponentials and in some very drastic way, reducing our

search space from an exponential one to a polynomial one.

(Refer Slide Time: 01:15)

So, it is tenting to believe that if one just thinks long enough and hard enough, that any

such problems, we will always find such an efficient short cut, where we can cut through

the exponential space of possibilities and quickly narrow down the space to a polynomial

number of realistic once from which the efficient solution, the actual solution we want

will emerge.

Now, unfortunately this ideal world is not actually the way the world is. So, there are

many problems, so which efficient algorithm do not exist or are not known to exist and

an unfortunately also many of these problems are extremely important practical

problems.

713

(Refer Slide Time: 01:56)

So, to get into this discussion, let us talk about the problem between, the difference

between generating a solution and checking a solution. So, supposing a school Math’s

teacher assigns the following homework, take a large number which is known to be the

product of two prime numbers and find these two prime numbers. From the student point

of view obviously, the problems is to generate the solution. So, given the large number

N, the student is expected to find two prime numbers p and q, such that p times q is equal

to N.

Now, the student submits or the students submit their solutions to teacher for evaluation.

So, the teacher is in much better respective, the teacher does not have to keep generating

p and q, the teacher has does not even need to know the answer. The teacher can just take

the answer given by the student, multiply p times q and determine whether p times q is

equal to N or not.

So, even without knowing the answer or even if the answer is wrong, the teacher may not

know the right answer, the teacher can decide whether or not the student as given the

correct answer. So, what the teacher is doing is checking the solution that the student was

trying to do or generate the solution.

714

(Refer Slide Time: 03:12)

So, this gives us some notion of a checking algorithm. So, if you have a problem, I can

say that I have a checking algorithm, if for every instance I can take a solution to that

instance and quickly verify whether or not that solution is actually a valid one. So,

checking algorithm takes an input for the problem, a solution which is may be not just

the solution, but solution plus some extra information, and then it determine whether or

not, this is a valid solutions, if so it says that the solution is correct and outputs S,

otherwise it says no.

So, in our example before the factorization example, the input instance is the number N

to be factorized. The solution that we get as a candidate to solve the problem is the pair

of primes p and q that the student as calculated and the checking algorithm involves

verifying that p times q is actually N.

715

(Refer Slide Time: 04:12)

So, in this context, let us look at a very canonical problem which has a checking

algorithm called Boolean satisfactory. So, we have some Boolean variables x, y and z.

So, Boolean variables can take values, true or false and we have a standard operations on

Boolean variables, negation takes a value of true and transit false and vise verses. So, we

write that with this exclamation mark using some programming language terminologies,

so not x it is used an exclamation mark x.

Then, we have x or y which is true provided at least one of them is true, so if either x is

true or y is true or both are true, x or y is true, we write that with this vertical bar or pair

of vertical bars and use an ampersand denote AND, x and y is true only if both are true.

So, x must be true and y must be true, either one of is false, x and y is false. So, this is

the standard Boolean operations that we know about Boolean variables.

Now, we set up Boolean formulas in a very special form, we said first construct what we

called are clauses. So, clause is a big disjunction, it is x or not y or z and something. So,

what is the inside the disjunction or either variables or their negations. So, these are

called literals, so literal is either a variable or a negated variable. So, clause is read as a

disclause x or not y or z dot, dot, dot or w. So, this is a clause and in finally, a formula

will be a combination of such clauses connected by AND.

So, C will be some x or y or something, D will be some z or not y or something and so

on and so each clause will have this structure of big disjunction of literals and then they

are combined by an ampersand, so they are all handled together. So, I need to make

716

clause C true and I need to make clause D true and I need to make clause E true and so

on.

(Refer Slide Time: 06:05)

So, our goal is to find out whether this given formula can be made true by assigning

suitable values to x, y and z; all the variables in the formula. So, this is called valuation.

Valuation is a function that says x is true, y is false, z is true and so on, so it fixes the

value of each Boolean variable. Now, having fix that I can evaluate, so for example, if I

take x to be true, y to be true and z to be false, then here from since in this clause, x is

true so that is enough to make the whole clause true, y is also true, in this clause for

instance x is true, so this part is true, x is true.

Here, it says y is true, z is false, so both of these are actually true and now, here it says x

is false not x, but x is true, so not x is false, y is true by our evaluations not y is false, but

fortunately z is false, so not z is true. So, in each of these clauses at least one of the

literals becomes true under this valuation, so this entire formula is actually satisfied.

Now, if I had this extra clause here to the same formula, now it terms out, there is no way

to find any way of assigning true false to x, y, z make it.

You can check that this particular evaluation does not work, because if I look at this it

such that x is true, so this does not work and it says that z is false, so it does not works.

So, z is false, so z is not true, x is true, so not x is false, so this is false or false. So, this

clause actually valued false. So, this particular evaluation which make the first formula

true, it does not make the second formula true.

717

(Refer Slide Time: 07:50)

And in particular no valuation will actually make it true and that can actually be checked

if you look at these three clauses, this can be said as that y implies x, what this says is

that if y is true, then x must be true. And this says that if z is true, then y must be true and

this says that if x is true, then z must be true, so this more or less says that x, y and z

must all be the same. But if then x, y and z all the same, then either one of the first of the

last was going to be false, actually there is no satisfying assignment. So, our goal is to

find out whether there is a satisfying assignment or not.

(Refer Slide Time: 08:28)

So, to generate a solution, of course the Brute force approach is to try assigning each of

x, y and z; true and false and turn, and then once we assigned x, y and z to be true, false;

718

we can evaluated and check if the formula is true and we try this for every possible such

assignment. If there are N variables, each of them has two possibilities, clearly there are

2 to the N, so an exponential number of possible assignments.

Now, the amazing thing is that in general no better algorithm is known for this problem,

at the movement as things stand, we do not know an efficient way to take a formula on

this form and find out, whether it has a satisfying assignment. However, it is easy to

check that it has an algorithm which can check a solution. So, if I give you a formula and

I claim that a given way valuation is actually a satisfying assignment, all I have to do, I

plug in that assignment, like we did for the earlier case.

I consider ((Refer Time: 09:25)) V x is true, let me put true everywhere as C x, you say V

y is false, let me put false everywhere at C y, and then evaluate the formula, find out

whether the AND’s and OR’s had a true answer or not. So, it is easy to see that this has

the checking algorithm, but it does not have a generating algorithm, at least we do not

know a path.

(Refer Slide Time: 09:45)

So, in this case, it please turn and other case is also, sometimes your presentation of the

problem is important. So, we said that a clause was a disjunction of literals, and then the

formula was a conjunction of clauses, what would be a reverse says, what would be say

clauses are conjunction of literals. So, in a clause, I connect everything with AND, and

then I connect the clauses with OR, this means that I must makes C true or D true or E

true.

719

Earlier, I doing C true and D true and E true, now if I look inside a clause, how do I

make a conjunction like this prove, well you sees red, I must make each of this true and

else I make everything true, this whole AND will fail. So, if I take a clause, then the

settings of the variables inside the clause four sneeze, it says x must be true, y must be

not y must be true, so y must be false and z must be true and so on, so I do not have

much choice.

Now, inside a clause, I am might see not y and then somewhere else I may see y. So,

therefore, such a thing will say I am being asked to say y true and y false, so this clause

cannot be true, then I move to the next. So, I look at each clause, I check whether the

unique valuations is this on plausible or feasible, if it is at null, because I only need to

satisfy one clause, other ways I move to the next one.

So, in a linear scan from left to right, I can basically solve this problem, if it is given to

me in this form, whereas in the earlier form I need, there is no efficient algorithm. So,

cleared with the presentation the problem is important.

(Refer Slide Time: 11:13)

So, let us look at a completely different problem. So, we have this well known traveling

salesman problem. So, salesman is supposed to visit a network of cities and between

each pair of cities, we have a distance. So, we can think of it is a complete graph, every

city connected to every other city and an each edge between two cities, there is a weight

indicating the distance of a cause or the time or some quantity which the sales man has to

use in order to travel from the one city to next city.

720

So, the salesman goal is to visit every city on this map. So, the salesman wants to find

the shortest tour that visits each city exactly once. Then, a graph theatrics sense what it

means they were simple cycle, simple cycle means that no nodes repeat, I do not visit the

same vertex twice along these things with starts and ends of the same city, that is why as

a cycle a starts and ends of the same city, same vertex, visit every vertex in between and

of minimum cost.

(Refer Slide Time: 12:19)

So, one second, there is no simple way to write a generative an algorithm which will

actually analyzes and find a good solution. So, now, our question is, is there a checking

solution, is there a checking algorithms. So, recall that, what a checking algorithm does

is a takes as input, it takes an input instance and it takes a solution, and then it says yes or

no, this solution works this solution does not work.

So, now, we have a graph and somebody gives us a cycle, we can verify that is a cycle.

So, that particies, we can even compute the cost of the cycle that is also easy, but how do

we know that an among all the difference cycles, this is a least cost. So, it is not very

clear that there is checking algorithm, because in the end, though we can verify part of

this solution, that it is a cycle, that is this all the cities and we know it is cost, we have no

way without solving the problem.

Remember the goal over checking algorithm is not to solve the problem, it is to ask

whether this given solution is correct for this given instance. So, we may not know how

to solve the problem, like the teacher is whose assign the factorization home work, the

721

teacher does not need know how to factorized, this not even need to know the factors, the

teacher only needs to know, how to multiply to potential factors and check whether the

answer is the same as the big number.

Similarly, here we just need to check, whether the given nodes form a cycle, but unless

we know how to solve the problem, the checking algorithm cannot figure out whether is

a least cost cycle or not.

(Refer Slide Time: 13:52)

So, how do we get a rounds? So, the solution is such optimization problems to convert

them into checking algorithms is to transform the problem by giving a bound, so I given

upper bound or a lower bound depending on out. So, in this case, we will ask will not

just ask if there is a tour, if there is traveling sales men tour of lowest cost, we have says

is there are tour with cost at most key. So, we have just given a bound on the cost, we are

not asking for optimum tour, we just in only asking for a tour with does not cost more

than K.

Now, we have given a solution, we can check it, because we can check it is a cycle, and

then we can add up all the edges which form part of the tour and find out, whether it

abject to K or S. So, so how to is a help us, because our goal was to find the shortest tour,

what we have said now is that if I give you an upper bound size a tour, I can use

checking algorithm for yes or no, but now we can try different case.

So, we have the minimum of value of K is clearly 0 and the maximum value is some

upper bound. What is a good upper bound? Well, we know that a tour is going to take a

722

edges from the top, if I take all the edges in the graph and add up all the cost, the total

tour cannot be more than that. So, I have a range of values is possible for the cost of tour

from 0 to say the sum of all the edge weights in the graph. You might even find in better

bound than that, because obviously, we cannot use all the edge weights, we can only use

N of them to complete a cycle of size n.

But, this is a very conserve bound, now what we do is, we do in this range, we do binary

search. So, we first check is there a tour of whose cost is mid way, if there is then I will

now check below is there a tour cost half of that. So, by doing a binary search, we

narrow down the thing and finally, will find that this is the level, where we have a tour

and about that, we have tours and below that, we do not have tours. So, this is the

minimum cost tour.

So, by using a binary search and an upper bound, we can take an optimization problem

we have looking for an optimal answer and transform it in to a sequence of checking

problems, which after a logarithmic search through this space of the bounds will give me

the actual solution or not.

(Refer Slide Time: 16:05)

So, here is yet another problem. So, this is the called the independent set bar. So, we said

that two vertices are independent; if they are not connected by it is an edge. So, for

example, here you good look at say 1 and 7, then there independent together no

connections. So, may be 6 and 5 are independent, so we say that two vertices are

independent, if there is some edge.

723

(Refer Slide Time: 16:32)

Now, if I take this set by take 1 and 7, this is an independent, but if I add 5 to it is for the

instance, now 5 and 7 are connected by an edge, so these are not independent. So, an

independent set is one in which every pair is independent. So, 1 and 7 is an independent

set, but 1, 5, 7 is not an independent set, because 5, 7 is a neutral.

(Refer Slide Time: 16:55)

So, here for instance, you can check the 3, 4, 5 forms in independent set, because is no in

between 3 and 4, there is no edge in between 4 and 5, there is no edge in between 3 and

5. So, for example, if you are trying to say you interpret these nodes as people and you

node edges as knowing each other. So, supposing in now you want to set up some kind of

a committee, where you want to be usual that all the committee members have

724

independent opinions are not influence by the facts that they known’s at that the before

that.

Then you can pick up an independent set, an independent set produce people, who do not

mutually do not know each other. So, therefore, when they meet for the first time,

hopefully, if they have neutral opinions about each other and about the problem then

there… So, this might be one example of why you want pickup an independence set. So,

the algorithmic problem is to find than largest independence set.

So, here we have found in independence set of size 3, can I do better and I find one of

size 4, maybe, maybe not. So, this my algorithmic problem, given a graph what is the

largest independence set, that I can find in it. As we saw before, this is a problem where

we have to get an answer. So, if somebody tells me 3, 4, 5 is a maximum independence

set, I can verify easily the 3, 4, 5 reason independence set, but I cannot necessarily verify

that, if there is no larger set.

This is like that traveling cells one problem, when I can verify that the tour to given to

me is a simple cycle, but I may not be able to verify that the cost of the tour is the best

among all such. So, once again, if you want to set up which checking version the

problem, we will set up off, will say is there an independent set of size K. So, we are

trying to find the largest one, so you will say at least size K. So, if I at least size 3 and

this produce of this, I will verified at least size 3.

And at least size 4 and this is my witness and this is my solution, I will say no. So,

independence set again like traveling salesmen and Boolean satisfies ability, we do not

know of a good generative solution. But by using this bounded version were by the

provider’s number quantities, we are trying to estimate we can produces checking

versions.

725

(Refer Slide Time: 19:04)

So, the related looking problem, relative problem to be this is called vertex cover, we say

that a node you covers every edge that is instance. So, for example, if I take this node,

then it covers these three, these four edges, because all these edges started. So, now,

vertex cover is something that covers all the edges. So, for instance by take a 2 cover

those edges, now these edges are not there, maybe I take 3 to cover it. So, I take 3 in this

covers, these edges have a still have some missing edges, so maybe I pickup 7, which is

7 covers these three edges.

So, I have found a collection of 1, 2 3 vertices which cover all the edges in this star. So,

now, what we want to do is find this smallest vertex cover in a given graph, an again

because we do not know how it is smallest in general, we will say that, we will take any

vertex cover which is at most says K, if the remove is smallest one. So, it is like that

traveling salesmen, we will in the shortest tour, so it say is there a tour of less than or

equal to said me cost, so is there a vertex cover less then equal to set in cost. So, these

two problem look connected and in back they are. So, here for example, we have a vertex

cover of size 4, which indicated in 3.

726

(Refer Slide Time: 20:40)

So, connection if that U is an independent sets of size K, if in only if it is compliments it

vertex cover of size N minus K. So, in our case U 3, 4, 5 was a vertex independence of a

size 3, when it is compliment must be vertex cover of size N minus K. So, if I could

solve the vertex cover problem for the certain size, I can solve the independence set

problem for N minus K. So, I can convert one to the other and the proof of this very easy.

So, supposing I know that using independent set, use in independent set, then no just

with in U. So, by take any edge U V, then if one into inside U, the other in must outside

U or both N points are outside. So, therefore, if I take any edge at least one of it is end

points lives in V minus U. So, V minus U covers all the edges, so therefore, V minus U

some vertices.

And of course, given that this as K vertices, the other must have N minus K vertices,

conversely supposing I assume that V minus U is a vertex cover, then every edge starts

from there. If every edge starts from there, one of it is ends points is there. So, I cannot

have an end which is entirely within the complement, because if have an edge which is

like this, then is a an edge which is not covered by vertex cover. So, they cannot be any

edges with in U, therefore, U is an independence set.

And once again, the sizes are guaranteed, because their complementary search a vertices.

So, this says that independence set reduces to vertices cover with the complementary

size, this the bounded vertices version and vertex cover reduces to independence set. So,

the reduce to each other.

727

(Refer Slide Time: 22:25)

So, when we introduce reducibility in the contest of liner programming and network

floors we said that one aim is to transfer efficient solution from B to A. So, when I

reduce A to B, if B is an efficient, then A is efficient. But in this contest, what we are

trying to say is that this is not known to be an efficient, then this also is not known to be

efficient.

So, since independently we believe that independent it is not efficient then because

reduces the vertex cover, vertex cover is also likely to be a not efficient and right

sources. So, it terms of it that many pairs of checkable problems or such inter reducible

problem, either directly are you may find a cycle or things A reduce to B, B reduce to C

and C reduce backward.

So, in that sense, all of them are equally easy or equally hard and since, we tend to

believe that nobody as solved any of them yet, if they must all the hard, this gives to the

believe that there is large group of problems which are actually practical in terms of their

usefulness. But not known to be efficiently solved notice and in terms of them all notions

of algorithmic efficiency. So, we will look at this little more detail in our last lecture.

728

	106106131 Week-8
	lec1
	lec2
	lec3
	lec4
	lec5
	lec6
	lec7
	lec8
	lec9
	lec10
	lec11
	lec12
	lec13
	lec14
	lec15
	lec16
	lec17
	lec18
	lec19
	lec20
	lec21
	lec22
	lec23
	lec24
	lec25
	lec26
	lec27
	lec28
	lec29
	lec30
	lec31
	lec32
	lec33
	lec34
	lec35
	lec36
	lec37
	lec38
	lec39
	lec40
	lec41
	lec42
	lec43
	lec44
	lec45
	lec46
	lec47
	lec48
	lec49
	lec50
	lec51
	lec52
	lec53
	lec54
	lec55
	lec56

