
LECTURE 28

Square-root – time curve fitting method

Log-time curve fitting method

- 1. Plot the dial reading and square root of time i.e T for a pressure increment as shown in figure.
- 2. Draw a tangent PQ to the initial portion of the plot as shown in fig.
- 3. Draw a line PR such that OR=1.15OQ.
- 4. The intersection of the line PR with the second portion of the curve i.e point S is marked.

The time corresponding to point S represent √t90 (Square root of time for 90% consolidation)

$$T_{v} = \frac{C_{v}t}{H^{2}}$$

$$C_{v} = \frac{T_{v}H^{2}}{t}$$

For $U_z > 60\%$ $T_v = 1.781-0.933 log 10 (100 - U %)$

$$T_v = 0.848$$

$$C_{v} = \frac{0.848H^{2}}{t_{90}}$$

Time Rate of consolidation-

We know that

$$T_{v} = \frac{C_{v} t}{H^{2}}$$

$$t = \frac{T_v H^2}{C_v}$$

For a given degree of consolidation (U) --- T_v is Constant

$$t \propto \frac{H^2}{C_v}$$

Therefore the time required for a given degree of consolidation is proportional to the length of the drainage path.

If the time required to reach a certain degree of consolidation is measured in the laboratory on a sample obtained from the field.

The time taken by the field deposit of known thickness can be predicted by using

$$t_f = \frac{H_f^2}{H_L^2} \times t_L$$

 t_f = Time required for field consolidation

t_L = Time required for laboratory consolidation

 H_F = Thickness of soil in the site

 H_L = Thickness of laboratory sample