
Chapter 23: Java Memory Model and Thread Safety 

 

Introduction 

In the era of multi-core processors and concurrent programming, ensuring that threads interact 
safely is one of the core challenges. Java provides a robust concurrency model, and at the heart 

of it lies the Java Memory Model (JMM). The JMM defines how threads interact through 
memory and what behaviors are allowed in a multithreaded environment. Understanding the 
JMM is crucial for writing correct, thread-safe programs. This chapter delves into the 

intricacies of the Java Memory Model, common thread safety issues, and strategies to ensure 
thread-safe applications in Java. 

 

23.1 The Java Memory Model (JMM) 

23.1.1 What is the Java Memory Model? 

The Java Memory Model is a part of the Java Language Specification (JLS) that defines how 
threads communicate through shared memory and how changes made by one thread become 

visible to others. 

• Ensures visibility and ordering of variables. 

• Prevents unexpected behavior due to CPU and compiler optimizations. 

• Introduced formally in Java 5 (JSR-133) to address shortcomings in earlier models. 

23.1.2 Key Concepts in JMM 

• Main Memory and Working Memory: 

o Each thread has its own working memory (like CPU registers/cache). 

o Changes must be flushed to main memory to be visible to other threads. 

• Happens-Before Relationship: 

o A set of rules defining the ordering of operations in a multithreaded program. 

o If operation A happens-before operation B, then the effect of A is visible to B. 

• Visibility vs. Atomicity vs. Ordering: 

o Visibility: A change made by one thread is seen by another. 

o Atomicity: The operation completes in a single, indivisible step. 

o Ordering: The sequence in which operations are performed. 

 



23.2 Thread Safety 

23.2.1 What is Thread Safety? 

A class is said to be thread-safe if multiple threads can access shared data without 

corrupting it or causing inconsistent results, regardless of the timing or interleaving of their 
execution. 

23.2.2 Why Thread Safety is Hard? 

• Race Conditions: When two threads access shared data simultaneously and the result 

depends on the order of execution. 

• Atomicity Violations: When compound actions (like check-then-act) are not atomic. 

• Memory Consistency Errors: When changes made by one thread are not visible to 

others. 

 

23.3 Visibility Problems in Multithreading 

23.3.1 Without Synchronization 

class VisibilityDemo { 
    static boolean flag = false; 
 
    public static void main(String[] args) {  
        new Thread(() -> { 
            while (!flag) { 
                // spin 
            } 
            System.out.println("Flag is true");  
        }).start(); 

 
        try { Thread.sleep(1000); } catch (InterruptedException e) {}  

 
        flag = true; 
    } 
} 

Problem: The thread may never see flag = true because the compiler or CPU might optimize 

the loop. 

 

23.4 Synchronization in Java 

23.4.1 The synchronized Keyword 

• Ensures mutual exclusion and visibility. 

• Acquires a monitor lock before entering a synchronized block/method. 



public synchronized void increment() {  
    count++; 
} 

23.4.2 Intrinsic Locks and Monitors 

• Every object has an intrinsic lock (monitor). 

• Only one thread can hold the lock at a time. 

23.4.3 Memory Effects of Synchronization 

• Entering a synchronized block flushes changes from main memory to working 

memory. 

• Exiting a synchronized block pushes changes to main memory. 

 

23.5 Volatile Keyword 

23.5.1 What is volatile? 

The volatile keyword tells the JVM that a variable’s value will be modified by different 

threads, ensuring visibility, but not atomicity. 

private volatile boolean running = true;  

23.5.2 When to Use volatile? 

• Suitable for flags, state indicators, not for compound operations like count++. 

 

23.6 Atomic Variables 

23.6.1 java.util.concurrent.atomic Package 

Provides lock-free thread-safe operations on single variables. 

AtomicInteger count = new AtomicInteger();  

 
count.incrementAndGet(); // atomic operation 

• Other classes: AtomicLong, AtomicBoolean, AtomicReference 

 

23.7 Immutable Objects 

23.7.1 Benefits of Immutability 

• Automatically thread-safe. 

• Simplifies reasoning about program state. 
final class Point { 
    private final int x, y; 



    public Point(int x, int y) { 
        this.x = x; this.y = y; 
    } 
} 

 

23.8 Thread-Safe Collections 

23.8.1 Legacy Synchronization 

• Vector, Hashtable are synchronized but not efficient under high concurrency. 

23.8.2 Modern Alternatives 

• ConcurrentHashMap 

• CopyOnWriteArrayList 

• BlockingQueue 
ConcurrentHashMap<String, Integer> map = new ConcurrentHashMap<>();  
map.put("A", 1); 

 

23.9 Thread Confinement and Local Variables 

23.9.1 Thread Confinement 

Data is confined to a single thread, no need for synchronization. 

23.9.2 ThreadLocal 

Provides variables that each thread has its own isolated copy of. 

ThreadLocal<Integer> threadId = ThreadLocal.withInitial(() -> 0); 

 

23.10 Best Practices for Thread Safety 

1. Prefer immutability wherever possible. 

2. Use concurrent collections. 

3. Avoid shared mutable state. 

4. Use Atomic variables or synchronization for updates. 

5. Minimize the scope of synchronization. 

6. Use thread-safe design patterns (e.g., producer-consumer, immutable, monitor object). 

 



Summary 

In this chapter, we explored the Java Memory Model (JMM) and its vital role in defining how 
threads interact with memory. We examined the importance of thread safety, the problems 

caused by improper synchronization, and how Java provides tools like synchronized, 

volatile, and java.util.concurrent to build safe multithreaded applications. Understanding 

the JMM is crucial to preventing subtle and hard-to-detect concurrency bugs in modern Java 
programs. Always aim for clarity, immutability, and minimal shared mutable state when 

designing concurrent systems. 

 


