Chapter 14: Production of Concrete

Introduction

The production of concrete is a systematic and well-regulated process that ensures the final product meets desired strength, durability, and performance standards. It encompasses several stages: batching, mixing, transporting, placing, compacting, finishing, and curing. Each stage influences the quality of concrete significantly. Understanding these processes in depth is critical for civil engineers to produce concrete that is structurally sound and long-lasting.

1. Batching of Concrete

Batching is the process of measuring the quantities of cement, aggregates, water, and admixtures to prepare the concrete mix.

1.1 Methods of Batching

• Volume Batching:

- o Ingredients are measured in terms of volume.
- o Commonly used for small construction sites.
- o Less accurate and may lead to inconsistencies in mix proportions.
- o Example: 1:2:4 mix (cement:sand:coarse aggregate) by volume.

Weigh Batching:

- o Ingredients are measured by weight using a weigh batcher.
- o Most accurate and preferred method for modern construction.
- o Ensures consistency and reliability of mix proportions.
- Required in quality control environments and ready-mix concrete (RMC) plants.

1.2 Tolerances in Batching

Cement: ±1%

Aggregates: ±2%

Water: ±1%

Admixtures: ±3%

Proper calibration of equipment and regular checks are essential for maintaining batching accuracy.

2. Mixing of Concrete

Mixing ensures a uniform blend of the constituents to produce homogeneous and workable concrete.

2.1 Types of Mixing

• Hand Mixing:

- o Used in small works and emergencies.
- o Concrete is mixed manually on a platform.
- o Mixing quality depends on labor skill.
- o Usually limited to lower grade concrete (M10–M15).

Machine Mixing:

- o More consistent and efficient.
- o Performed using concrete mixers (tilting or non-tilting type).
- o Common mixer types:
 - Pan Mixer: Used in precast concrete work.
 - Drum Mixer: Widely used for general construction.
- o Mixing time: Normally 1.5-2 minutes.

• Ready Mix Concrete (RMC):

- o Concrete mixed at a central plant and transported to the site.
- o Ensures high quality and consistency.
- o Reduces onsite labor and material wastage.
- o Requires careful monitoring of travel time and temperature.

2.2 Mixing Time and Uniformity

- Minimum mixing time must ensure uniform distribution of materials.
- Under-mixing causes weak spots, while over-mixing can lead to segregation and loss of workability.

3. Transportation of Concrete

Once mixed, concrete must be transported quickly and efficiently to avoid setting before placement.

3.1 Factors Affecting Transportation

- Distance between mixing and placing point.
- Temperature and weather conditions.
- Slump/workability of concrete.
- Use of admixtures (e.g., retarders).

3.2 Methods of Transportation

- Wheelbarrows and Head Pans:
 - o Common in small-scale construction.
 - o Labor-intensive and suitable for short distances.
- Buckets and Cranes:
 - o Used for vertical transportation on high-rise buildings.
- Pumps:
 - o Most efficient method for modern construction.
 - o Can deliver concrete to great heights and distances.
 - o Requires pumpable mix design (suitable W/C ratio and grading).
- Transit Mixers (RMC Trucks):
 - o Used for ready-mix concrete delivery.
 - o Truck-mounted rotating drum prevents segregation and setting.
 - o Must be delivered within 90 minutes of batching (as per IS 4926).

4. Placing of Concrete

Placing refers to depositing concrete into the required position in the formwork.

4.1 Considerations During Placing

- Avoid segregation by placing concrete close to its final position.
- Do not pour concrete from excessive height (>1.5 m).

- Ensure layers are not allowed to set before the next layer is placed.
- Pour concrete continuously to avoid cold joints.

4.2 Techniques of Placing

- Manual placing using shovels or pans.
- Chutes and tremie pipes for inaccessible areas.
- Concrete buckets and cranes.
- Pumping, especially for high-rise or congested structures.

5. Compaction of Concrete

Compaction eliminates air voids from freshly placed concrete, ensuring maximum density and strength.

5.1 Methods of Compaction

- Hand Rodding and Tamping:
 - o Suitable for small-scale or unreinforced sections.
- Vibration:
 - o Most effective method.
 - o **Internal Vibrators (Needle Vibrators):** Inserted into the concrete mass.
 - o **External Vibrators:** Attached to formwork; used for precast elements.
 - o Surface Vibrators: Used for slabs and pavements.

5.2 Over-Vibration and Under-Vibration

- Over-vibration can lead to segregation.
- Under-vibration results in honeycombing and reduced strength.

6. Finishing of Concrete Surfaces

Finishing enhances surface texture, aesthetics, and durability.

6.1 Finishing Techniques

- Floating: Using wooden or magnesium floats to level the surface.
- **Troweling:** Using steel trowels for smooth finish.
- **Brooming:** Provides skid resistance on pavements.

• **Stamping:** Decorative concrete surfaces using patterns and colors.

7. Curing of Concrete

Curing is the process of maintaining adequate moisture, temperature, and time to allow proper hydration of cement.

7.1 Importance of Curing

- Enhances strength and durability.
- Reduces surface shrinkage and cracking.
- Promotes better bond development.

7.2 Curing Methods

- Water Curing:
 - o Ponding, spraying, or wet coverings (e.g., hessian cloth).
- Membrane Curing:
 - o Applying curing compounds to seal moisture.
 - o Useful in dry and windy conditions.
- Steam Curing:
 - o Used in precast plants for accelerated curing.
- Self-Curing:
 - Admixtures that retain moisture internally (e.g., SAP superabsorbent polymers).

7.3 Duration of Curing

- Minimum 7 days for ordinary Portland cement.
- 10–14 days for blended cements (e.g., PPC, PSC).
- As per IS 456:2000, curing should be extended during cold weather.

8. Quality Control in Concrete Production

To ensure the concrete produced meets design requirements, rigorous quality control is essential.

8.1 Quality Control Measures

- Testing of raw materials (cement, aggregates, water).
- Calibration of batching equipment.
- Slump test for workability.
- Compressive strength test (cube/cylinder).
- Non-destructive testing (NDT) for in-situ concrete.
- Proper documentation and record-keeping.

8.2 Field Tests on Concrete

Field tests are essential for assessing concrete quality in real-time. They help identify issues early during production or placement.

a) Slump Test

- Measures workability of fresh concrete.
- Conducted using a slump cone (300 mm high, 200 mm base, 100 mm top).
- Types of slumps:
 - o True Slump Good workability
 - o Shear Slump Inconsistent mix
 - o Collapse Slump Excessive water content

b) Compacting Factor Test

- Used for very low workability concrete (not suitable for slump test).
- Determines degree of compaction.
- Especially useful for concrete used in road construction or mass foundations.

c) Flow Table Test

- Used for testing highly workable or self-compacting concrete (SCC).
- Measures spread diameter after jolting on a flow table.

8.3 Laboratory Tests on Concrete

In addition to field tests, laboratory tests are conducted to verify hardened concrete properties.

a) Compressive Strength Test

- Cube specimens (150 mm) tested at 7 and 28 days.
- Carried out as per IS 516:1959.
- Most widely used parameter for structural design validation.

b) Split Tensile Strength Test

- Cylinder specimens placed horizontally in testing machine.
- Determines tensile strength of concrete.
- Helps in understanding cracking resistance.

c) Flexural Strength Test

- Also called Modulus of Rupture.
- Important for pavement and slab design.
- Based on beam testing (100 × 100 × 500 mm specimens).

8.4 Sampling and Acceptance Criteria

Sampling is done to ensure concrete quality throughout a batch or project.

a) Sampling Frequency

- For concrete volume up to 5 m³: 1 sample.
- For 6–15 m³: 2 samples.
- For $16-30 \text{ m}^3$: 3 samples, and so on.

b) Acceptance Criteria (as per IS 456:2000)

- Based on average strength of sample cubes.
- Minimum individual cube strength must not be less than 75% of characteristic strength.
- If results fall below limits, structure may require NDT or core testing.

9. Automation in Concrete Production

Modern construction sites and RMC plants are increasingly adopting automation to improve quality, consistency, and efficiency.

9.1 Batching Plant Automation

- Fully automated plants control:
 - o Ingredient proportioning (by weight)

- Moisture content correction
- o Real-time data logging
- Reduces human error and increases productivity.

9.2 Computer-Controlled Mixing

- Advanced software integrates:
 - o Real-time feedback from sensors
 - o Adjustments in water-cement ratio
 - o Mixing time optimization

9.3 Sensors and IoT in Concrete Production

- Embedded sensors track:
 - o Temperature
 - o Hydration progress
 - o Strength development
- Useful for critical infrastructure projects and precast elements.

10. Environmental Considerations in Concrete Production

As sustainability becomes a core concern, concrete production methods are adapting to minimize environmental impact.

10.1 Carbon Footprint of Concrete

- Cement production is a major source of CO₂ emissions.
- Aggregate mining impacts land and water resources.
- Transport and energy usage add to environmental load.

10.2 Sustainable Practices

- Use of supplementary cementitious materials (SCMs):
 - o Fly ash, GGBS, silica fume
 - o Reduces cement consumption and improves durability
- Recycled aggregates:
 - Derived from demolished concrete
 - o Processed and graded for reuse

- Use of low-carbon cements:
 - o LC3 (Limestone Calcined Clay Cement)
 - o Blended cements

10.3 Waste Management

- Slurry water and washout from RMC plants must be treated.
- Reusing returned concrete as base layer material.
- Solid waste (e.g., leftover hardened concrete) can be crushed and used as RCA (Recycled Concrete Aggregate).

11. Innovations in Concrete Production

Recent technological developments are revolutionizing how concrete is produced and applied.

11.1 Self-Compacting Concrete (SCC)

- Highly flowable and non-segregating.
- Eliminates need for vibration.
- Ideal for complex reinforcement zones or precast elements.

11.2 3D Printed Concrete

- Automated layering of concrete using robotic arms or gantries.
- Enables complex geometries and rapid construction.
- Challenges include material control and printing speed.

11.3 Ultra-High Performance Concrete (UHPC)

- Extremely high compressive (150–200 MPa) and tensile strength.
- Very low permeability.
- Used in bridges, security structures, and precast facades.

11.4 Green Concrete

- Made using industrial by-products and recycled materials.
- Lower carbon emissions, improved thermal efficiency.
- Can be customized for specific applications.