
 

So, if we use equation 14 in equation 15, what was equation 14? l m was kappa into y, this was 

what we said in equation number 14. So, we can simply write 

 

 or we can simply write  

 

and this is equation number 16, very simple. So, for small values of y it can be assumed. So, if 

the y is very small we can assume that tau is equal to tau not, where tau not is the shear stress at 

the pipe wall and can be assumed to be a constant. So, at the wall the shear stress is assumed to 

be constant and equal to tau not.  

(Refer Slide Time: 13:14) 
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And therefore, what we can say, if we substitute tau is equal to tau not in equation 16, we can 

obtain  

 

or du / dy, this quantity actually tau not can be written as rho. So, but the catch here is, what is 

the catch? We have considered small value of y. So, du / dy can be written as, 1 / kappa y and 

under root tau / rho is rho u *. So, it becomes  

 

and this u * under root tau not / rho is the sheer velocity and this has the dimension of velocity.  

 

And if you integrate the equation number 17, so, what we can get is, simple integration, it will 

get 

      

. This is very simple integration, from here to here, you can attempt it. 

(Refer Slide Time: 14:39) 
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Then using the boundary conditions, what are the boundary conditions? So, u at y is equal to R, 

where R is the radius of the pipe. We will get, u is equal to u max. That is what we have seen at 

the center line of the pipe the velocity is going to be the maximum. So, if we use this boundary 

condition u at y is equal to R is u max, we can get u is equal to, you know, we put u max here, y 

will be R and therefore, we can obtain C. 

 

C will be u max minus u * /  kappa ln R and if we substitute this as C, then we can get equation  

 

or  

 

or if when we substitute kappa as 0.4, we can get 

 

and this is equation number 20. This is just simple manipulation and as you can see we have 

derived a logarithmic velocity profile starting with the Prandtl mixing length theory for turbulent 

fluid flow.  
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So, laminar flow was something like this, a parabolic profile. Here, a profile is little different u is 

u maximum plus a logarithmic profile. So, it looks like something like this. Now, the equation 20 

this equation 20 can be expressed as, 

(Refer Slide Time: 16:52) 

 

u max, so, what we do is, we bring u on the other side. So, we bring u on this side and we take 

this whole side component this side, then what the result is, u max minus u because u max will 

always be larger than u is equal to 2.5 u * ln R / y. y will always be less than R or we bring u 

frictional velocity down, then we get u max, you bring it down here by dividing then you get u 

max minus u / u * equals to 2.5 ln R / y. And, so, this is ln. 

 

So, we can put it in form of log. This is simple manipulation, we can get u max minus u / u * is 

equal to 5.75 log to the base 10 R / y. u max minus u is called the velocity defect or velocity 

defect law, this is velocity defect law. This is just simple, you know, manipulation of these terms 

here.  

(Refer Slide Time: 18:13) 
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So, now we are going to solve one of the problems, problem number 7. And what it says is, the 

velocity of water. So, what we have learned in this particular lecture is about the turbulent flow 

and this problem 7 will help you in solving any problem that is based on this particular concept. 

So, it says the velocities of water through a pipe of diameter 10 centimeter are 4 meters per 

second and 3.5 meters per second at the center of the pipe and 2 centimeters from the pipe center, 

respectively. Considering turbulent flow in pipe, determine the sheer stress at the wall. So, we 

need to determine tau not. So, let us see how are we going to solve this problem. We are going to 

have a white screen first.  

(Refer Slide Time: 19:11) 
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As always what we do we solve, we write given, diameter is given as 10 centimeter, try to 

always write down in SI units. So, we write 0.1 meter. So, diameter is 10. So, radius is going to 

be 0.05 meter. u max is given, is given as 4 meters per second, that is, at y is equal to R. And this 

is also given, u at r is equal to 2 centimeter is given 3.5 meters per second, that is, y is equal to R 

- r. So, y is going to be 5 - 2 is equal to 3 centimeter.  

 

So, u at y is equal to 3 is equal to 3.5 meters per second. So, now u max we are using the minus u 

/ u * was 5.75 log R / y. So, substituting the values here, this from here, this equation, 4 - 3.5 

divided by u * is equal to 5.75 log base 10 5 / 3. This will give us, u * as 0.392 meters per 

second. We also know, u* is under root tau not / rho or tau not is rho u* whole square. Therefore, 

tau not rho is 1000 and u * we already got, 0.392 whole square. 

 

So, tau not is coming out to be 153.6 Newton per meter square. This is the solution to the 

question that we have at hand. So, going back again to the slide, so, what we got was 

approximately 153 Newton per meter square the sheer stress at the wall.  

(Refer Slide Time: 22:47) 

 

So, now, the turbulent velocity profile is much fuller compared to the parabolic profile of 

laminar flow case. Actually this is the flow, this is the true picture, this is a laminar flow that we 

have seen before. But below is, this is the V average and the velocity fluctuates or deviates from 

these depending upon the flow condition. So, this is the V average line. There are several other 
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layers, viscous sublayer, buffer layer, overlap layer and turbulent layer. So, as I told you in the 

last slide, there are different layers, different layers in turbulent flow.  

(Refer Slide Time: 23:35) 

 

And we are going to talk about that. Turbulent flow along a wall consists of 4 regions. Viscous 

sublayer, this layer is thin layer next to the wall. So, this is the closest to the wall where the 

viscous effects are dominant and the velocity profile is all most linear. So, in viscous sub layer 

the viscous effects are dominant and the velocity profile is linear. In the buffer layer, though 

turbulent effects are becoming significant, the viscous effects are still dominating.  

(Refer Slide Time: 24:22) 
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In the overlap layer, the turbulent effects are much more significant but still not dominant, in the 

overlap layer. In the turbulent layer, the turbulent effects dominate over these viscous effects.  

(Refer Slide Time: 24:35) 

 

Now, when it comes to these beds and these regimes, some of the important terms that are there 

is hydro dynamically rough and smooth boundaries. So, this is the, if you see, there is a term 

called k. Here, if in here, so, k here is the mean height of the surface irregularities. We talked in 

the beginning that the turbulence could occur due to the presence of irregularities on the surface. 

So, let us say, the mean height of the surface irregularities is k. And delta dash, for example, is 

the height of viscous or laminar sublayer, the first layer that we talked, the viscous sub layer that 

was where the velocity profile was almost linear. 

(Refer Slide Time: 25:33) 
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So, outside the laminar sublayer the flow is turbulent, that is, what we have talked about. Eddies 

present in the turbulent zone try to penetrate the laminar sublayer and interact with the boundary. 

But when the surface irregularities are much smaller than delta dash, the height of the viscous 

sublayer, the eddies are unable to reach the surface irregularities when the roughness height is 

much less. Therefore, we define that boundary as smooth boundary.  

 

So, smooth boundary are the one, where the thickness of the viscous sublayer is much larger than 

the surface irregularities. We will see, what those surface regularities here, represented by k. 

(Refer Slide Time: 26:29) 
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When k is much larger than the delta dash, that is, the thickness of viscous sub layer, the 

irregularities are above the laminar sublayer leading to the interaction of eddies with the surface 

irregularities and therefore, these are called rough boundaries. From Nikuradse’s roughness, k / 

delta dash if it is less than 0.25. So, these values which we are going to talk about, has been 

derived from experiments by Nikuradse. Nikuradse said if k which is the height of the 

irregularity is divided by the thickness of viscous sublayer is less than 0.25, the boundary is 

smooth, if k / delta dash is greater than 6, the boundary is for sure rough.  

(Refer Slide Time: 27:27) 

 

But if it lies in between 0.25 and 6, the boundary is transitional. In terms of roughness Reynolds 

number, so actually, there is something called roughness Reynolds number that is dependent 

upon k the height of the irregularities. So, in terms of roughness Reynolds number, if this 

Reynolds number is less than the 4, the boundaries is smooth, if it is more than the 100 then the 

boundary is rough and if it is lies between 4 and 100 the boundaries is transitional. 

 

So, either we can calculate it in terms of k / delta, where k is this height of the irregularities and 

lambda dash is the viscous sublayer or more it is more easy to calculate, u * k / nu. If this is less 

than 4, it is smooth, if it is more than 100 then rough otherwise in between it is a transitional 

boundary.  

(Refer Slide Time: 28:31) 
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Now, we will solve one problem about this particular concept. So, the question is, a pipeline 

carrying water has average height of irregularities projecting from the surface of the boundary of 

the pipe as 0.15 millimeter. What type of boundary it is? We have to estimate the rough or 

smooth or transitional boundary. The shear stress at the pipe wall is 4.9 Newton per meter square 

and the kinematic viscosity is 0.01 Stokes. So, shear stress at the wall is given. So, we will be 

able to calculate u* from here. But better that we go and start doing the problems as we have 

been doing.  

(Refer Slide Time: 29:22) 

 

So, we have to write the things that we it has been given to us. k is given as, 0.15 millimeter, it is 

always a good habit to write it into SI unit into 10 to the power - 3 meter, tau not is actually 
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given here, 4.9 Newton per meter square and nu is also given 0.01 into 10 to the power minus 4 

meter square per second. Therefore, we can simply calculate u* under root tau not / rho, as I told 

you and this will come out to be under root 4.9 / 1000, so, it will come out to be 0.07 meters per 

second, very simple.  

 

So, best is to calculate the roughness Reynolds number Re* and that is given as, u* k / nu. So, 

Re* is, u* is 0.07, k is 0.15 into 10 to the power - 3 and nu is 0.01 into 10 to the power - 4 and 

that comes to be 10.5. So, as Re* lies between 4 and 400, this implies that the boundary is 

transitional. So, just going back to that screen, so, what we have got is Re* is 10.5 implying 

transitional boundary. 

 

So, this is the place where we will end this lecture of ours today and resume in the next lecture 

and will talk about turbulent flow in smooth pipes. So, I will see you in the next lecture. Thank 

you. 
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