
Chapter 19: Modelling – Membrane, Two-
Dimensional Wave Equation

Introduction
Civil engineers frequently encounter problems involving vibrating surfaces—such 
as bridges, building floors, or membranes like drums or architectural fabrics. 
Understanding how these structures respond to external forces and oscillate over 
time is crucial for ensuring stability, safety, and performance. The behavior of such 
systems is modeled using partial differential equations, particularly the two-
dimensional wave equation. This chapter presents the mathematical modelling 
of a vibrating membrane and develops the two-dimensional wave equation 
governing its motion.

19.1 Physical Model of a Vibrating Membrane
A membrane is a thin, flexible surface stretched tightly across a frame—like a 
drumhead. When disturbed, it vibrates in complex patterns depending on the 
initial force, boundary constraints, and its tension and mass.

Let us consider:

 A rectangular membrane lying in the xy-plane, occupying the domain 
0<x<a, 0< y<b.

 It is tightly stretched and fixed along the boundary.
 Let u(x , y ,t) represent the vertical displacement of the membrane at 

position (x , y ) and time t .

Assumptions:

 The membrane is homogeneous and isotropic.
 Tension T  is uniform across the surface.
 The motion is small (linearization valid).
 No external force acts during motion (free vibration).



19.2 Derivation of the Two-Dimensional Wave Equation
Let:

 ρ: mass per unit area (surface density),
 T : tension per unit length (N/m),
 u(x , y ,t): vertical displacement.

Small Element Analysis

Take a small rectangular element Δ x × Δ y. The vertical force due to tension is:

F=T ( ∂2u
∂x2 +

∂2 u
∂ y2 )Δ x Δ y

According to Newton's second law:

ρ Δ x Δ y
∂2u
∂ t2 =T ( ∂2 u

∂ x2 + ∂2u
∂ y2)Δ x Δ y

Dividing both sides:

ρ
∂2u
∂ t2 =T ( ∂2u

∂ x2 +
∂2u
∂ y2 )

Or:

∂2u
∂ t 2 =c2( ∂2u

∂ x2 +
∂2 u
∂ y2 )

where c2=T
ρ

 is the square of the wave speed.

19.3 The Two-Dimensional Wave Equation
∂2u
∂ t 2 =c2∇2u=c2( ∂2 u

∂ x2 + ∂2u
∂ y2 )

This is the two-dimensional wave equation, a second-order linear PDE describing 
wave motion in a rectangular membrane.



19.4 Boundary and Initial Conditions
Boundary Conditions (Dirichlet)

Since the membrane is fixed at the boundary:

u(0 , y , t)=u (a , y ,t )=0 ,∀ 0< y<b , t>0

u(x ,0 , t)=u(x ,b , t)=0 , ∀0<x<a ,t>0

Initial Conditions

At t=0:

u(x , y ,0)=f (x , y)(initial shape)

∂u
∂ t

(x , y ,0)=g (x , y )(initial velocity)

19.5 Solution by Separation of Variables
Assume:

u(x , y ,t)=X (x )Y ( y)T (t)

Substituting into the wave equation:

X Y
d2T
d t2 =c2(Y T

d2 X
d x2 +X T

d2Y
d y2 )

Dividing both sides by X Y T :

1
T

d2 T
d t 2 =c2( 1

X
d2 X
d x2 + 1

Y
d2 Y
d y2 )

Let:

1
T

d2 T
d t 2 =− λ (temporal part)

1
X

d2 X
d x2 + 1

Y
d2Y
d y2 =−

λ
c2 (spatial part)

Split again:



1
X

d2 X
d x2 =− μ,

1
Y

d2 Y
d y2 =−( λ

c2 − μ)
Solving Each ODE

1. X ″+μ X=0, X (0)=X (a)=0  ⇒ X n( x)=sin ( nπ x
a ) , μn=( n π

a )
2

2. Y ″+ν Y=0, Y (0)=Y (b)=0  ⇒ Y m( y)=sin(m π y
b ) , νm=(m π

b )
2

3. T ″+λT=0, where λ=c2 ( μn+νm )  ⇒ T nm(t)=Anm cos(ωnm t)+Bnmsin (ωnmt), with 

ωnm=√ λ=c √( nπ
a )

2

+(m π
b )

2

19.6 General Solution

u(x , y ,t)=∑
n=1

∞

∑
m=1

∞

[ Anm cos (ωnmt)+Bnm sin(ωnm t)] sin( nπ x
a )sin(m π y

b )
The coefficients Anm, Bnm are determined using initial conditions via double Fourier 
sine series.

19.7 Normal Modes and Natural Frequencies
Each pair (n ,m) corresponds to a normal mode with associated natural 
frequency:

ωnm=c √( nπ
a )

2

+(m π
b )

2

The fundamental mode occurs at n=1 ,m=1, with lowest frequency.

19.8 Examples of Membrane Vibration
Example 1: Square Membrane

Let a=b. The natural frequencies simplify to:



ωnm=
c π
a

√n2+m2

Modes such as (1,1), (2,1), (1,2), etc., show symmetric and asymmetric patterns 
of vibration.

Example 2: Initial Displacement Only

Suppose u(x , y ,0)=f (x , y), ∂u
∂ t

(x , y ,0)=0. Then all Bnm=0, and:

Anm= 4
ab

∫
0

a

∫
0

b

f (x , y )sin( nπ x
a )sin(m π y

b )d xd y

19.9 Applications in Civil Engineering
 Structural dynamics of slabs and floor systems.
 Seismic analysis of structures (vibration modeling).
 Membrane structures like tensile roofs.
 Sound propagation and acoustic insulation in building design.
 Vibration isolation in bridges and tall buildings.

19.10 Numerical Methods for the 2D Wave Equation
While analytical solutions using separation of variables are useful for simple 
geometries and boundary conditions, real-world structures often demand 
numerical solutions due to complexity. Common numerical techniques include:

19.10.1 Finite Difference Method (FDM)

Discretize the domain into a grid:

Let:

 ui , j
n  be the approximation of u(x i , y j , tn),

 Δ x, Δ y: spatial step sizes,
 Δt : time step.

The explicit finite difference scheme for the 2D wave equation is:

ui , j
n+1=2ui , j

n −u i , j
n−1+( c Δt

Δ x )
2

(ui+1, j
n −2ui , j

n +ui −1 , j
n )+( c Δ t

Δ y )
2

(u i , j+1
n − 2ui , j

n +ui , j −1
n )



Stability Criterion (CFL condition):

( c Δt
Δ x )

2

+( c Δt
Δ y )

2

≤ 1

This ensures that the solution remains stable over time.

19.10.2 Finite Element Method (FEM)

FEM is more powerful for irregular domains. The basic idea involves:

 Dividing the domain into elements (triangles/quads).
 Approximating the solution using basis functions over each element.
 Applying Galerkin's method to convert the PDE into a system of algebraic 

equations.

In civil engineering software (e.g., ANSYS, SAP2000), FEM is widely used to model 
membrane behavior under loads.

19.11 Effects of Damping
In practice, all materials exhibit damping, i.e., gradual loss of vibrational energy. 
The 2D wave equation is modified as:

∂2u
∂ t 2 +2 β

∂u
∂ t

=c2∇2 u

where β is the damping coefficient.

Solutions in this case decay over time:

u(x , y ,t)=e− β t ⋅(oscillating part)

Engineering Relevance:

 Damping reduces resonance risk.
 Important in earthquake-resistant design.
 Applied in vibration isolators and soundproof membranes.



19.12 Circular Membrane Model (Polar Coordinates)
For membranes like circular drums, we use polar coordinates (r , θ). The 2D wave 
equation becomes:

∂2u
∂ t 2 =c2[ ∂2 u

∂r 2 +
1
r

∂u
∂r

+ 1
r2

∂2 u
∂θ2 ]

Assume axisymmetric vibration: u=u(r , t)

⇒ ∂2 u
∂ t 2 =c2( ∂2u

∂r2 + 1
r

∂u
∂ r )

This leads to Bessel’s equation in space:

r2 d2 R
dr2 +r

d R
d r

+(λ r2)R=0

The solution involves Bessel functions:

R(r)=J 0(αn r

a )
Where α n are zeros of J0. This gives natural frequencies for circular membranes.

19.13 Experimental Visualization and Validation
In real-world civil labs, Chladni plate experiments help visualize mode shapes:

 A thin plate or membrane is sprinkled with sand and vibrated using a 
speaker.

 Sand accumulates along nodal lines, forming intricate patterns.

These patterns validate theoretical mode shapes of u(x , y ,t).

Engineers also use:

 Laser Doppler Vibrometers to measure vibrations.
 Accelerometers and strain gauges for dynamic testing.

19.14 Software Tools for Membrane Simulation
Several software platforms support 2D wave simulations:



Tool Application
MATLAB PDE Toolbox, visualization of 

u(x , y ,t)

COMSOL Multiphysics Finite element modeling of wave 
propagation

ANSYS Structural vibration and 
membrane dynamics

ABAQUS Modal and harmonic response 
analysis

Python NumPy/SciPy + Matplotlib for 
custom PDE solvers

19.15 Real-World Applications in Civil Engineering
Application Description
Tensile Structures Design of lightweight tensile 

roofs (stadiums, airports)
Seismic Engineering Vibration response of floors, 

foundations, bridges
Acoustic Engineering Design of membrane-based 

sound absorbers
Smart Structures Embedded sensors in 

membranes to detect vibrations
Biomedical Structures Modeling artificial membranes in 

implants
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