
Chapter 1: Discrete-Time Signals and Systems: Convolution and 
Correlation 

1.1 Introduction to Discrete-Time Signals 

Discrete-time signals are sequences of data or values indexed by integers, typically 
representing quantities sampled from continuous-time signals. These signals are a fundamental 
concept in Digital Signal Processing (DSP), where the continuous data is represented and 
processed in a discrete format. Discrete-time signals can be analyzed and manipulated using 
various operations such as convolution and correlation, which are key to understanding how 
signals interact with systems. 

Key Concepts: 

● Discrete-Time Signal: A signal defined only at discrete intervals, typically obtained by 
sampling a continuous signal. 
 

● Sequence Representation: Discrete-time signals are typically represented as 
sequences x[n]x[n], where nn is an integer index. 
 

1.2 Discrete-Time Systems 

A discrete-time system is a system that processes discrete-time signals. It takes a 
discrete-time input signal and produces a discrete-time output signal based on some 
transformation. Discrete-time systems can be characterized by their impulse response, which 
describes the system's response to an impulse input. 

System Representation: 

● Linear System: A system is linear if it satisfies the properties of superposition and 
scaling. The output for a weighted sum of input signals is the weighted sum of the 
outputs. 
 

● Time-Invariant System: A system is time-invariant if a shift in the input signal results in 
the same shift in the output signal. 
 

1.3 Convolution in Discrete-Time Signals 

Convolution is one of the most important operations in signal processing, describing how a 
system's output can be computed given its input and impulse response. Convolution provides a 
mathematical framework for determining the output of a linear time-invariant (LTI) system based 
on its impulse response. 



Mathematical Definition of Convolution: 
 Given two discrete-time signals x[n]x[n] (input) and h[n]h[n] (impulse response), their 
convolution y[n]y[n] (output) is defined as: 

y[n]=(x∗h)[n]=∑k=−∞∞x[k]h[n−k]y[n] = (x * h)[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k] 

Where: 

● x[k]x[k] is the input signal. 
 

● h[n−k]h[n - k] is the flipped and shifted version of the impulse response. 
 

● The summation is over all values of kk where the signals overlap. 
 

Geometric Interpretation: 

● The convolution process can be visualized as "sliding" the impulse response h[n]h[n] 
over the input signal x[n]x[n] and computing the weighted sum of the overlap at each 
step. 
 

Example: 
 Suppose we have two discrete-time sequences: 

● x[n]={1,2,3}x[n] = \{1, 2, 3\} 
 

● h[n]={0.5,1,0.5}h[n] = \{0.5, 1, 0.5\} 
 

The convolution of x[n]x[n] and h[n]h[n] can be computed as: 

y[n]=∑k=−∞∞x[k]h[n−k]y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k] 

This results in a new sequence y[n]y[n], which is the system’s response to the input. 

Computational Steps for Convolution: 

1. Flip the impulse response h[n]h[n]. 
 

2. Shift h[n]h[n] across x[n]x[n] and compute the sum of products for each shift. 
 

3. Repeat for all values of nn. 
 

 



1.4 Properties of Convolution 

Convolution has several important properties that are useful in both theoretical analysis and 
practical applications: 

1. Commutative Property: 
 x[n]∗h[n]=h[n]∗x[n]x[n] * h[n] = h[n] * x[n] 
 The order of the signals does not affect the convolution result. 
 

2. Associative Property: 
 x[n]∗(h1[n]∗h2[n])=(x[n]∗h1[n])∗h2[n]x[n] * (h_1[n] * h_2[n]) = (x[n] * h_1[n]) * h_2[n] 
 Convolution can be performed in any order when combining multiple signals. 
 

3. Distributive Property: 
 x[n]∗(h1[n]+h2[n])=(x[n]∗h1[n])+(x[n]∗h2[n])x[n] * (h_1[n] + h_2[n]) = (x[n] * h_1[n]) + 
(x[n] * h_2[n]) 
 The convolution of a signal with a sum of two signals is the sum of their individual 
convolutions. 
 

4. Scaling Property: 
 a⋅x[n]∗h[n]=x[n]∗(a⋅h[n])a \cdot x[n] * h[n] = x[n] * (a \cdot h[n]) 
 Scaling one of the signals by a constant scales the result of the convolution by the same 
constant. 
 

5. Time Shifting Property: 
 x[n−m]∗h[n]=(x∗h)[n−m]x[n - m] * h[n] = (x * h)[n - m] 
 A shift in the input signal results in a corresponding shift in the output signal. 
 

 

1.5 Correlation in Discrete-Time Signals 

Correlation is a measure of similarity between two signals as a function of the time-lag applied 
to one of them. It is widely used in signal processing for tasks like matching, detection, and 
filtering. Correlation is closely related to convolution but differs in that it does not involve flipping 
the signal being correlated. 

Mathematical Definition of Correlation: 
 The correlation of two discrete-time signals x[n]x[n] and y[n]y[n] is defined as: 

rxy[n]=∑k=−∞∞x[k]y[n+k]r_{xy}[n] = \sum_{k=-\infty}^{\infty} x[k] y[n + k] 

Where: 



● rxy[n]r_{xy}[n] is the correlation function. 
 

● x[n]x[n] and y[n]y[n] are the signals being compared. 
 

● The sum is over all values of kk where the signals overlap. 
 

Difference Between Convolution and Correlation: 

● In convolution, the impulse response is flipped and shifted, whereas in correlation, the 
signal is only shifted, and no flipping occurs. 
 

● The primary use of convolution is for system analysis, whereas correlation is often used 
for signal matching or feature detection. 
 

 

1.6 Applications of Convolution and Correlation 

1.6.1 Filtering: 

● Convolution is used to implement digital filters. In this context, the impulse response 
h[n]h[n] of the filter defines how it affects the input signal x[n]x[n], producing the filtered 
output y[n]y[n]. 
 

● Common types of filters include: 
 

○ Low-pass filters: Allow low-frequency components to pass and attenuate 
high-frequency components. 
 

○ High-pass filters: Allow high-frequency components to pass and attenuate 
low-frequency components. 
 

1.6.2 Signal Detection and Matching: 

● Correlation is used in signal detection and pattern matching. For example, finding a 
specific waveform within a larger signal can be achieved by correlating the signal with a 
reference template. 
 

● Cross-correlation is particularly useful for comparing two signals, like detecting delays 
or similarities between them. 
 

1.6.3 Image Processing: 



● In image processing, convolution is used for operations like blurring, sharpening, and 
edge detection, where the image is treated as a 2D signal and a kernel (a small matrix) 
is convolved with it. 
 

 

1.7 Example of Convolution and Correlation 

Example 1: Convolution of Two Signals 

Consider two discrete-time signals: 

● x[n]={1,2,3}x[n] = \{1, 2, 3\} 
 

● h[n]={0.5,1,0.5}h[n] = \{0.5, 1, 0.5\} 
 

To compute their convolution y[n]=x[n]∗h[n]y[n] = x[n] * h[n], we follow the convolution formula: 

y[n]=∑k=−∞∞x[k]h[n−k]y[n] = \sum_{k=-\infty}^{\infty} x[k] h[n - k] 

For each value of nn, we calculate the sum of products of the overlapping values of x[n]x[n] and 
h[n−k]h[n - k]. 

Example 2: Correlation of Two Signals 

Now, consider two signals: 

● x[n]={1,2,3}x[n] = \{1, 2, 3\} 
 

● y[n]={3,2,1}y[n] = \{3, 2, 1\} 
 

To compute the correlation rxy[n]r_{xy}[n], we use the correlation formula: 

rxy[n]=∑k=−∞∞x[k]y[n+k]r_{xy}[n] = \sum_{k=-\infty}^{\infty} x[k] y[n + k] 

The result of the correlation will show how similar the two signals are at each time shift. 

 

1.8 Conclusion 

Convolution and correlation are powerful tools in discrete-time signal processing. Convolution is 
primarily used to analyze system responses, while correlation is often used for signal matching, 
detection, and analysis. Both operations are fundamental for tasks like filtering, pattern 



recognition, and image processing. Understanding their mathematical properties and practical 
applications is key to effectively designing and implementing digital signal processing systems. 
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