
Chapter 8: System Debugging and Profiling 

8.1 Overview 

In embedded systems and Linux-based environments, debugging and profiling are essential 
practices to ensure the proper functioning and optimal performance of the system. Debugging 
helps identify and resolve issues like incorrect behavior, crashes, or unexpected outputs, while 
profiling helps monitor the performance of the system, optimizing for resource usage such as 
CPU, memory, and I/O. 

This chapter covers various techniques, tools, and methodologies for debugging and profiling 
Linux-based systems, particularly in the context of embedded systems. 

 

8.2 System Debugging in Linux 

System debugging involves identifying and fixing issues in both kernel and user-space 
components of the system. Linux provides a wide range of tools and techniques to troubleshoot 
problems, ranging from simple logs to advanced kernel debugging methods. 

8.2.1 Debugging User-Space Applications 

1.​ GDB (GNU Debugger):​
 

○​ GDB is a powerful debugger for Linux systems that allows you to inspect and 
control the execution of a program. It can help diagnose issues like segmentation 
faults, memory access errors, and logical bugs.​
 

2.​ Key Features:​
 

○​ Set breakpoints to pause the execution at a specific line of code.​
 

○​ Step through code line-by-line to inspect the flow.​
 

○​ Examine and modify variables in memory during execution.​
 

Basic Usage:​
​
 gdb ./my_program 

(gdb) break main 

(gdb) run 



(gdb) backtrace  # Get a stack trace of function calls 

(gdb) print my_variable  # Inspect a variable's value 

(gdb) quit  # Exit the debugger 

3.​  
4.​ Valgrind:​

 
○​ Valgrind is a memory debugging tool for detecting memory leaks, memory 

corruption, and memory management errors in C/C++ applications.​
 

5.​ Key Features:​
 

○​ Detects invalid memory access (e.g., accessing freed memory).​
 

○​ Identifies memory leaks by tracking unfreed memory allocations.​
 

○​ Provides a detailed log of memory usage to help pinpoint errors.​
 

Basic Usage:​
​
 valgrind --leak-check=full ./my_program 

6.​  
7.​ Strace:​

 
○​ Strace is used to trace system calls made by a user-space process, providing 

insights into the interactions between the process and the kernel.​
 

8.​ Key Features:​
 

○​ Trace system calls such as file operations (open, read, write), network 
interactions, process creation, and more.​
 

○​ Helps identify which system resources are being accessed and how.​
 

Basic Usage:​
​
 strace ./my_program  # Trace all system calls made by the program 

9.​  



10.​Core Dumps:​
 

○​ A core dump is a file that captures the memory of a process at the time of a 
crash. Analyzing core dumps can help diagnose issues in applications that 
unexpectedly terminate.​
 

11.​Basic Usage:​
 

Enable core dumps with:​
​
 ulimit -c unlimited  # Allow core dumps 

○​  
○​ Once the program crashes, a core dump file will be generated (e.g., core).​

 

Analyze the core dump with GDB:​
​
 gdb ./my_program core 

(gdb) backtrace  # Get the stack trace 

○​  

8.2.2 Debugging Kernel-Space Code 

1.​ dmesg (Diagnostic Messages):​
 

○​ The dmesg command displays kernel log messages, which provide information 
about system events, hardware interactions, driver messages, and errors.​
 

2.​ Key Features:​
 

○​ View real-time kernel logs, especially useful for debugging hardware or driver 
issues.​
 

○​ Inspect the output from device drivers, kernel modules, and system processes.​
 

Basic Usage:​
​
 dmesg | tail  # View the most recent kernel messages 

3.​  



4.​ Kernel Debugging with printk:​
 

○​ The printk function is the kernel's equivalent of printf. It outputs messages 
to the kernel log (dmesg).​
 

Usage Example:​
​
 printk(KERN_INFO "This is a debug message: %d\n", my_variable); 

5.​  
6.​ KGDB (Kernel GNU Debugger):​

 
○​ KGDB is a debugger for the Linux kernel. It allows you to debug kernel code on a 

live system, either via a serial connection or over a network.​
 

7.​ Key Features:​
 

○​ Set breakpoints in the kernel code.​
 

○​ Examine kernel variables and memory.​
 

○​ Step through kernel code to debug drivers or subsystems.​
 

8.​ Usage: Requires setting up a remote debugging environment, typically over a serial 
cable or TCP/IP.​
 

9.​ KDB (Kernel Debugger):​
 

○​ KDB is a basic kernel debugger that can be used in environments where KGDB 
might not be available or suitable. It allows debugging via the console.​
 

10.​Usage:​
 

○​ Activate KDB from the kernel command line by appending kdb to the boot 
parameters.​
 

○​ Once activated, KDB provides commands for inspecting and modifying kernel 
memory, stack traces, and more.​
 

 

8.3 System Profiling in Linux 



Profiling helps you analyze the performance of a system or application by measuring metrics 
such as CPU usage, memory consumption, and I/O operations. It allows you to identify 
performance bottlenecks, optimize resource usage, and improve system efficiency. 

8.3.1 Profiling User-Space Applications 

1.​ gprof:​
 

○​ gprof is a profiling tool that generates execution statistics, helping developers 
identify performance bottlenecks in user-space applications.​
 

2.​ Key Features:​
 

○​ Measures how much time is spent in each function.​
 

○​ Helps identify which functions consume the most resources.​
 

3.​ Basic Usage:​
 

Compile with profiling enabled:​
​
 gcc -pg -o my_program my_program.c 

○​  

Run the program to generate profiling data:​
​
 ./my_program 

○​  

View the profiling results:​
​
 gprof my_program gmon.out > analysis.txt 

○​  
4.​ perf:​

 
○​ perf is a performance analysis tool that provides detailed information about CPU 

performance counters, cache misses, context switches, and more.​
 

5.​ Key Features:​
 

○​ Collects hardware-level performance data like CPU cycles and cache misses.​
 



○​ Supports both user-space and kernel-space profiling.​
 

Basic Usage:​
​
 perf stat ./my_program  # Get basic performance statistics 

perf record ./my_program  # Collect detailed profiling data 

perf report  # Generate a human-readable report 

6.​  
7.​ valgrind --tool=callgrind:​

 
○​ Callgrind is a profiling tool in Valgrind that focuses on the call graph, helping you 

visualize the performance of different function calls in your application.​
 

Usage:​
​
 valgrind --tool=callgrind ./my_program 

8.​  After execution, you can use kcachegrind to visualize the profiling data.​
 

 

8.3.2 Profiling Kernel-Space Code 

1.​ ftrace:​
 

○​ ftrace is a powerful tracing utility built into the Linux kernel. It is used to trace 
kernel function calls, enabling performance analysis and debugging.​
 

2.​ Key Features:​
 

○​ Trace function calls in kernel space.​
 

○​ Measure function execution times and track the execution flow.​
 

3.​ Basic Usage:​
 

Enable function tracing:​
​
 echo function > /sys/kernel/debug/tracing/current_tracer 



echo 1 > /sys/kernel/debug/tracing/tracing_on 

○​  

View trace output:​
​
 cat /sys/kernel/debug/tracing/trace 

○​  
4.​ perf for Kernel Profiling:​

 
○​ The perf tool also supports kernel profiling, providing insights into kernel 

execution at the function level, along with performance data such as cache 
misses and context switches.​
 

Basic Usage:​
​
 perf record -e cpu-clock -a 

perf report  # View the profiling results 

5.​  
6.​ SystemTap:​

 
○​ SystemTap is another powerful tool that allows you to trace kernel functions and 

monitor kernel events dynamically.​
 

7.​ Key Features:​
 

○​ Trace kernel function calls and variables.​
 

○​ Collect detailed data about kernel events and performance.​
 

Basic Usage:​
​
 stap -v my_trace_script.stp 

8.​  

 

8.4 Conclusion 



Debugging and profiling are essential practices in Linux-based embedded systems 
development. By using the appropriate debugging tools like GDB, strace, and dmesg, you can 
identify and resolve issues in both user-space and kernel-space code. Profiling tools such as 
perf, gprof, and valgrind help optimize performance, improve resource usage, and ensure that 
the system is operating efficiently. 

Mastering these tools and techniques will significantly improve your ability to develop, 
troubleshoot, and optimize embedded systems running Linux. 

 


	Chapter 8: System Debugging and Profiling 
	8.1 Overview 
	8.2 System Debugging in Linux 
	8.2.1 Debugging User-Space Applications 
	8.2.2 Debugging Kernel-Space Code 

	8.3 System Profiling in Linux 
	8.3.1 Profiling User-Space Applications 
	8.3.2 Profiling Kernel-Space Code 

	8.4 Conclusion 


