
 

Chapter 5: Physical Design and Optimization 

Algorithms for Floorplanning, Placement, and Routing 

5.1 Introduction to Physical Design in VLSI 
 Physical design is the final step in the VLSI design flow, where logical representations of the 
circuit are transformed into a physical layout that can be fabricated. This stage involves critical 
tasks such as floorplanning, placement, routing, and optimization to meet performance, area, 
and power constraints. The goal of physical design is to efficiently use available silicon real 
estate while ensuring that the design meets the required functional specifications, performance 
metrics, and manufacturability requirements. 

This chapter provides an in-depth study of the key algorithms used in the physical design 
process, focusing on floorplanning, placement, and routing, which are the three main stages of 
physical design optimization. 

5.2 Floorplanning in VLSI Design 
 Floorplanning is the process of determining the relative positions of the various blocks or 
modules of a chip to optimize area usage and minimize interconnect delays. The primary goal of 
floorplanning is to create an initial layout that satisfies the design’s area constraints and 
optimizes the placement of blocks to minimize wirelength and power consumption. 

Key objectives in floorplanning include: 

● Block Placement: Determining the relative positions of functional blocks to minimize 
area and wirelength. 
 

● Wirelength Minimization: Minimizing the total length of the interconnects between 
blocks. 
 

● Timing Optimization: Ensuring that critical paths are not too long to avoid timing issues. 
 

Floorplanning algorithms can be broadly classified into two categories: 

● Analytical Algorithms: These algorithms use mathematical models to optimize the 
floorplan. They are often based on concepts from operations research and use 
techniques like simulated annealing or force-directed methods. 
 

● Partitioning Algorithms: These algorithms divide the chip into smaller partitions and 
then place these partitions in the most efficient manner. One of the most well-known 
partitioning algorithms is Kernighan-Lin. 
 



5.2.1 Floorplanning Algorithms 

● Simulated Annealing: This is a heuristic optimization method inspired by the annealing 
process in metallurgy. It gradually adjusts the positions of blocks on the chip to minimize 
a cost function that considers wirelength and area. By iterating through possible 
solutions and accepting worse solutions with a decreasing probability, simulated 
annealing can escape local minima to find near-optimal solutions. 
 

● Force-Directed Algorithms: These algorithms simulate the forces between blocks 
(attractive and repulsive forces) to determine their optimal positions. They iteratively 
adjust the blocks' positions by considering both the area and wirelength minimization. 
 

● Kernighan-Lin Algorithm: This algorithm is used for partitioning the floorplan. It works 
by iteratively swapping blocks between partitions to minimize the cut size (i.e., the 
number of interconnections between blocks in different partitions). 
 

5.3 Placement in VLSI Design 
 Placement is the process of assigning the positions of standard cells or blocks on the chip after 
floorplanning. The primary objective is to minimize the total wirelength and meet timing 
constraints, while also ensuring the design fits within the chip's available area. 

Placement algorithms aim to optimize: 

● Wirelength Minimization: By placing related cells closer together, the total wirelength 
can be reduced. 
 

● Timing Optimization: Critical paths must be considered during placement to avoid 
timing violations. 
 

● Density Control: Ensuring that the placement doesn’t create areas of high congestion, 
which could lead to manufacturing issues. 
 

Placement algorithms can be divided into two categories: 

● Global Placement: Involves the initial placement of cells to roughly distribute them 
across the chip to minimize wirelength. 
 

● Detailed Placement: Fine-tunes the cell placement by considering specific 
manufacturing constraints like cell overlap and routing congestion. 
 

5.3.1 Placement Algorithms 



● Simulated Annealing (SA): Similar to its use in floorplanning, simulated annealing is 
also widely used in placement algorithms. It starts with a random placement and 
iteratively improves the placement by minimizing a cost function (e.g., wirelength, timing, 
or congestion). The temperature parameter in simulated annealing allows the algorithm 
to escape local minima, leading to better solutions. 
 

● Greedy Algorithms: Greedy placement algorithms iteratively place cells by selecting the 
best position for each cell based on a given cost metric, such as the shortest wirelength 
to other cells. Although faster than simulated annealing, greedy algorithms are often not 
as effective at finding the global optimum. 
 

● Quadratic Programming: This method is used to solve placement problems in which 
the objective is to minimize a quadratic function (e.g., wirelength) subject to certain 
constraints (e.g., timing). It’s an optimization-based approach that provides high-quality 
solutions. 
 

● Partitioning-Based Placement: These algorithms divide the layout into manageable 
partitions and perform placement within each partition. The partitions are then refined 
iteratively, and this approach helps to reduce congestion and wirelength. 
 

5.4 Routing in VLSI Design 
 Routing is the process of connecting the cells or blocks placed in the previous steps with metal 
layers to form the complete circuit. The goal is to ensure that all connections are made while 
minimizing the total routing length, reducing power consumption, and avoiding timing violations. 

Routing involves: 

● Global Routing: Identifying the best general routes for each signal without considering 
the exact details of the layout. 
 

● Detailed Routing: Determining the exact path for each wire, ensuring there is no 
overlap or interference between wires. 
 

5.4.1 Routing Algorithms 

● Maze Routing: This is a classical routing algorithm used for finding the shortest path 
between two points while avoiding obstacles. It works by exploring all possible paths 
from the source to the destination in a grid-based layout, using a breadth-first search 
algorithm to find the optimal route. 
 

● Lee’s Algorithm: This is a variation of maze routing, which uses a wave propagation 
technique to explore the grid and find the shortest path. It is widely used in early routing 



steps and is efficient for small designs. 
 

● A Algorithm*: The A* algorithm is a well-known pathfinding algorithm that finds the 
shortest path by evaluating both the cost to reach the current point and the estimated 
cost to reach the destination. It’s used for both global and detailed routing in VLSI 
designs, balancing between performance and computational efficiency. 
 

● Global Routing with Steiner Trees: In this method, global routing aims to minimize the 
total wirelength by using Steiner trees, which are more efficient than using simple 
shortest-path algorithms like maze routing. Steiner trees involve adding extra "helper" 
points (called Steiner points) to improve routing efficiency. 
 

5.5 Optimization Techniques in Routing 
 Optimizing routing is essential to achieve compact, efficient, and manufacturable designs. 
Routing optimization techniques aim to minimize wirelength, reduce signal delay, and avoid 
congestion. 

● Congestion Avoidance: Algorithms focus on ensuring that there is no congestion in the 
routing layers. Routing congestion can lead to delays, increased power consumption, 
and manufacturing defects. 
 

● Layer Assignment: In multi-layer designs, layer assignment algorithms determine which 
metal layer to use for each wire, aiming to minimize wire crossings and congestion while 
meeting design rules. 
 

● Timing-Driven Routing: In timing-driven routing, the algorithm ensures that critical 
signals are routed with lower delays. This involves prioritizing certain paths that are 
critical to the circuit's performance. 
 

5.6 Conclusion 
 In this chapter, we explored the key algorithms used in physical design, focusing on 
floorplanning, placement, and routing. These optimization techniques are essential for 
transforming logical designs into manufacturable, efficient, and high-performance physical 
layouts. As VLSI designs become more complex, advanced algorithms and optimization 
methods are required to meet the stringent performance, area, and power requirements of 
modern integrated circuits. In the following chapters, we will discuss these techniques in more 
detail and examine how industry-standard tools apply them in real-world designs. 

 


	Chapter 5: Physical Design and Optimization 
	Algorithms for Floorplanning, Placement, and Routing 


