
 

Chapter 10: Case Studies: Designing Embedded Systems for Different Domains​
 (e.g., Automotive, IoT, Robotics) 

 

10.1 Introduction to Case Studies in Embedded System Design 

Embedded systems play a crucial role in a wide range of industries, from automotive and 
industrial automation to consumer electronics and the Internet of Things (IoT). These 
systems are designed to meet specific requirements and constraints, such as real-time 
performance, power efficiency, and reliability. 

This chapter provides a series of case studies from different domains, demonstrating 
how embedded systems are designed and implemented in real-world applications. Each 
case study highlights key design challenges and considerations, as well as the specific 
solutions that were applied to meet the needs of the domain. 

 

10.2 Case Study 1: Automotive Embedded Systems 

Automotive systems rely on embedded technology to improve vehicle safety, 
performance, and driver experience. In this case study, we explore the design of an 
embedded system for Advanced Driver Assistance Systems (ADAS), specifically a 
lane-keeping assistance system. 

10.2.1 Project Overview 

Lane-keeping assistance (LKA) systems are designed to help drivers maintain their lane 
on highways by using cameras and sensors to detect lane markings on the road. If the 
system detects that the vehicle is drifting out of its lane without a turn signal being 
activated, it provides corrective steering inputs to bring the vehicle back into the center 
of the lane. 

10.2.2 Design Considerations 

●​ Real-Time Performance: The LKA system must react quickly to changes in the 
road conditions, detecting lane markings and responding with steering 
adjustments within milliseconds.​
 

●​ Sensor Fusion: The system uses data from multiple sensors, including cameras, 
radar, and LIDAR, to create a comprehensive understanding of the vehicle's 



surroundings.​
 

●​ Safety and Redundancy: Safety is paramount in automotive systems. The LKA 
system must be highly reliable and include fail-safe mechanisms in case of sensor 
failure or software glitches.​
 

10.2.3 Embedded System Design 

●​ Microcontroller Selection: A real-time microcontroller with sufficient processing 
power and low-latency interrupt handling is chosen for the task, such as the 
STM32F4 series, which has ARM Cortex-M4 cores.​
 

●​ Sensor Integration: The system integrates cameras (for lane marking detection), 
radar (for obstacle detection), and LIDAR (for distance measurement). The data 
from these sensors is processed in real time to detect the vehicle’s position 
relative to the lane.​
 

●​ Control System: The embedded system uses a PID controller 
(Proportional-Integral-Derivative) to adjust the steering angle based on lane 
detection data.​
 

10.2.4 Challenges and Solutions 

●​ Challenge 1 - Real-Time Data Processing: The system must process sensor data 
at high speeds to make steering adjustments in real time.​
 

○​ Solution: The system uses a dedicated hardware accelerator (such as an 
FPGA or GPU) to offload image processing tasks from the microcontroller 
and accelerate lane detection.​
 

●​ Challenge 2 - Sensor Calibration and Accuracy: Ensuring that sensors are 
calibrated properly and their data is accurate is critical for safe lane detection.​
 

○​ Solution: The system uses Kalman filters for sensor fusion to combine data 
from multiple sensors and reduce noise.​
 

 

10.3 Case Study 2: IoT (Internet of Things) Embedded Systems 

The Internet of Things (IoT) is a rapidly growing domain that connects devices and 
sensors to the internet for remote monitoring, data collection, and automation. This case 



study focuses on the design of an IoT-based smart home system that allows users to 
monitor and control devices such as lights, thermostats, and security cameras remotely. 

10.3.1 Project Overview 

The smart home system uses a central hub (usually a microcontroller or a small 
embedded computer) to manage devices in the home. Sensors such as motion detectors, 
temperature sensors, and cameras provide data to the hub, which processes the data 
and allows for control via a mobile app or web interface. 

10.3.2 Design Considerations 

●​ Connectivity: The system must support communication between various IoT 
devices using standard protocols such as Wi-Fi, Bluetooth, or Zigbee.​
 

●​ Power Efficiency: Many IoT devices in smart homes are battery-operated, so the 
system must be energy-efficient to extend battery life.​
 

●​ Security: Given that smart homes are connected to the internet, ensuring data 
security and protecting against hacking attempts is critical.​
 

●​ Scalability: The system should support adding new devices (lights, sensors, 
cameras) easily.​
 

10.3.3 Embedded System Design 

●​ Microcontroller Selection: A low-power, Wi-Fi-enabled microcontroller, such as the 
ESP32, is used to handle sensor data and control devices. The ESP8266 is another 
popular choice for IoT applications due to its built-in Wi-Fi capability.​
 

●​ Sensor Integration: The system interfaces with temperature sensors (e.g., DHT11), 
motion detectors, and cameras to monitor the home environment.​
 

●​ Cloud Integration: Data collected by sensors is sent to a cloud platform, such as 
AWS IoT or Google Cloud IoT, for analysis and storage. The system also supports 
over-the-air (OTA) updates to keep firmware up to date.​
 

10.3.4 Challenges and Solutions 

●​ Challenge 1 - Power Consumption: Many IoT devices in a smart home run on 
battery power, requiring efficient power management.​
 



○​ Solution: The system uses low-power sleep modes when devices are idle 
and sensor-triggered wake-up to reduce power consumption.​
 

●​ Challenge 2 - Communication Reliability: Communication between devices must 
be robust, even in environments with potential interference.​
 

○​ Solution: The system uses Zigbee or LoRaWAN for low-power, long-range 
communication in cases where Wi-Fi is impractical.​
 

 

10.4 Case Study 3: Robotics Embedded Systems 

Robotics applications require embedded systems that can process data from multiple 
sensors, make decisions based on that data, and control actuators (e.g., motors and 
servos) in real time. This case study focuses on designing an embedded system for a 
robotic arm used in industrial automation. 

10.4.1 Project Overview 

The robotic arm is used for picking and placing objects on an assembly line. It uses 
sensors such as encoders and cameras for position feedback and object detection, while 
actuators (servo motors) control the movement of the arm. 

10.4.2 Design Considerations 

●​ Real-Time Control: The robotic arm must respond to sensor data in real time to 
perform accurate movements.​
 

●​ Sensor Integration: The system must integrate encoders for feedback on the arm’s 
position and vision systems (e.g., cameras or depth sensors) for detecting and 
picking objects.​
 

●​ Precision and Repeatability: The system must ensure that the robotic arm can 
move to the exact same position repeatedly to handle objects correctly.​
 

10.4.3 Embedded System Design 

●​ Microcontroller Selection: A powerful microcontroller or a single-board computer 
like the Raspberry Pi is chosen for controlling the robotic arm. The ARM Cortex-M 
series microcontrollers or STM32 are often used for high-performance embedded 
systems.​
 



●​ Sensor Integration: The system uses encoders to provide feedback on the arm’s 
position and cameras for object detection. The image data is processed using 
OpenCV or similar libraries.​
 

●​ Control Algorithms: The system uses PID control algorithms to adjust the servo 
motor’s position based on feedback from the encoders.​
 

10.4.4 Challenges and Solutions 

●​ Challenge 1 - Precision and Control: Ensuring precise and repeatable movements 
of the robotic arm is essential for accurate operations.​
 

○​ Solution: The system uses feedback control and PID controllers to ensure 
smooth, precise movement.​
 

●​ Challenge 2 - Processing Speed: Real-time processing of sensor data, especially 
image data from cameras, is required for precise control.​
 

○​ Solution: The system offloads some of the processing tasks to a GPU or 
FPGA for faster image processing.​
 

 

10.5 Key Takeaways from Case Studies 

●​ Automotive Systems: Real-time performance, safety, and redundancy are crucial 
for embedded systems in automotive applications. Systems must be highly 
reliable and operate in extreme environments.​
 

●​ IoT Systems: Power efficiency, security, and scalability are essential in IoT 
applications, where many devices need to communicate wirelessly and 
autonomously.​
 

●​ Robotics Systems: Precision, real-time feedback, and actuator control are critical 
for ensuring robotic systems perform tasks accurately and efficiently.​
 

 

10.6 Conclusion 

These case studies highlight the diversity of applications for embedded systems, from 
automotive safety to IoT and robotics. Each domain has its unique requirements, and 



successful embedded system design requires a deep understanding of the 
application-specific needs, real-time constraints, and the technologies involved. By 
addressing these challenges with appropriate hardware, software, and system 
integration techniques, engineers can create embedded systems that meet the needs of 
various industries effectively. 

 


	10.1 Introduction to Case Studies in Embedded System Design 
	10.2 Case Study 1: Automotive Embedded Systems 
	10.2.1 Project Overview 
	10.2.2 Design Considerations 
	10.2.3 Embedded System Design 
	10.2.4 Challenges and Solutions 

	10.3 Case Study 2: IoT (Internet of Things) Embedded Systems 
	10.3.1 Project Overview 
	10.3.2 Design Considerations 
	10.3.3 Embedded System Design 
	10.3.4 Challenges and Solutions 

	10.4 Case Study 3: Robotics Embedded Systems 
	10.4.1 Project Overview 
	10.4.2 Design Considerations 
	10.4.3 Embedded System Design 
	10.4.4 Challenges and Solutions 

	10.5 Key Takeaways from Case Studies 
	10.6 Conclusion 

