

Chapter 6: Analog-to-Digital Conversion (ADC)

6.1 Introduction

Analog-to-Digital Converters (ADCs) are critical components in mixed signal systems, responsible for transforming real-world analog signals into digital data suitable for processing, storage, and communication. The effectiveness of an ADC determines the accuracy and resolution with which analog phenomena can be measured.

This chapter covers the working principles, key architectures, and performance metrics used to evaluate ADCs across a range of applications.

6.2 Principles of ADC Operation

An ADC converts a continuous-time, continuous-amplitude signal into a discrete-time, discrete-amplitude digital signal. The conversion process consists of three main steps:

1. **Sampling** – Measuring the analog signal at discrete intervals of time.
2. **Quantization** – Mapping the sampled values to a finite number of levels.
3. **Encoding** – Representing the quantized level as a binary number.

Nyquist Theorem:

To faithfully reconstruct the analog signal, the sampling frequency f_{sf_s} must be at least twice the highest frequency present in the signal (Nyquist rate):

$$f_s \geq 2f_{max}$$

6.3 ADC Architectures

- **Successive Approximation Register (SAR) ADC**

- Moderate speed, medium-to-high resolution (8–18 bits)
- Low power consumption
- Common in battery-powered and microcontroller applications

- **Flash ADC**

- Extremely high-speed conversion (GHz range)
- Low resolution (typically 4–8 bits)
- Used in RF receivers, high-speed data acquisition

- **Sigma-Delta ($\Sigma\Delta$) ADC**

- Very high resolution (16–24 bits)
- Low bandwidth
- Ideal for audio and precision instrumentation

- **Pipeline ADC**

- Good tradeoff between speed and resolution (10–14 bits)
- Widely used in video, imaging, and communications

- **Dual Slope / Integrating ADC**

- Excellent noise rejection
- Slow conversion rate
- Suitable for digital voltmeters and precision DC measurements

- **Time-Interleaved ADC**

- Uses multiple ADCs in parallel to increase throughput
- Effective in high-speed systems, though it introduces inter-channel mismatches

6.4 ADC Performance Metrics and Specifications

Metric	Description
--------	-------------

Resolution (N)	Number of bits in the output. Determines how finely the input range is divided.
Sampling Rate	Number of samples per second (SPS or Hz). Defines how fast the ADC can acquire data.
Signal-to-Noise Ratio (SNR)	Ratio of signal power to the noise power. Higher SNR means better accuracy.
Effective Number of Bits (ENOB)	Real-world resolution, factoring in non-idealities and noise.
Integral Non-Linearity (INL)	Deviation of the ADC's output from the ideal transfer function.
Differential Non-Linearity (DNL)	Step-size deviation between adjacent digital codes. DNL > 1 LSB can lead to missing codes.
Total Harmonic Distortion (THD)	Ratio of sum of harmonics to the fundamental frequency. Affects spectral purity.
Spurious-Free Dynamic Range (SFDR)	Difference between fundamental signal and highest spurious component.
Aperture Jitter	Timing uncertainty during sampling. Critical in high-speed systems.
Power Consumption	Important for portable and low-power systems. Often traded against speed and resolution.

6.5 Transfer Function of an Ideal ADC

For an N -bit ADC with input range $V_{min} \text{ to } V_{max}$, the resolution or Least Significant Bit (LSB) size is:

$$\text{LSB} = V_{max} - V_{min} / 2^N$$

The output code for an input V_{in} is:

$$\text{Code} = \lfloor V_{in} / \text{LSB} \rfloor$$

This produces a stair-step transfer characteristic with 2^N levels.

6.6 Practical Considerations in ADC Design

- **Input Buffering:** Many ADCs require a low-impedance driver to minimize distortion and ensure settling time.
- **Clock Stability:** A jittery clock introduces sampling uncertainty—especially problematic in high-speed systems.
- **Reference Voltage Accuracy:** Precision and stability of the reference voltage directly affect accuracy.
- **Anti-Aliasing Filters:** Placed before the ADC to attenuate frequency components above the Nyquist limit.

6.7 Application-Specific ADC Selection

Application	Recommended ADC Type	Key Specs to Optimize
Audio Recording	Sigma-Delta	Resolution, SNR
RF Sampling	Flash / Time-Interleaved	Sampling Rate, SFDR
Wearables / Sensors	SAR	Power, Resolution
Power Meters	Dual Slope	INL, Accuracy
Cameras	Pipeline	Speed, Power

6.8 Example: SAR ADC Working Principle

A SAR ADC performs a binary search using a comparator and a DAC. Each bit decision is made by comparing the input signal with a reference generated from an internal DAC.

Steps:

1. Set MSB = 1, others = 0
2. Compare input V_{in} with DAC output
3. If $V_{in} > V_{DAC}$, keep the bit; else set to 0

4. Repeat for each bit, shifting right

6.9 Conclusion

ADCs are at the heart of mixed signal systems, enabling accurate digital representation of analog inputs. Understanding their architectures, specifications, and application domains is critical for designing high-performance systems. Selection of the appropriate ADC involves balancing speed, resolution, power, and noise performance according to the target application.