
 

Chapter 8: Design for Testability Strategies 

 

8.1 Introduction to Design for Testability (DFT) Strategies 

Design for Testability (DFT) is a crucial practice in modern electronic system design that 
integrates testability features into the design process itself. By considering testing requirements 
during the design phase, DFT strategies help simplify the process of verifying and debugging a 
system, ensuring higher product quality, reduced time-to-market, and lower testing costs. As 
electronic circuits, particularly system-on-chip (SoC) and integrated circuits (ICs), become 
increasingly complex, efficient testability strategies are essential to meet the rising demand for 
high-quality, reliable products. 

This chapter explores the various Design for Testability (DFT) strategies that engineers use 
to enhance the testability of electronic systems. We will delve into the common techniques, their 
benefits, and challenges, focusing on how these strategies are implemented in digital circuits, 
embedded systems, and larger SoC designs. 

 

8.2 Common Design for Testability (DFT) Techniques 

DFT incorporates several methodologies that help ensure systems can be easily tested for 
defects, ensuring performance and quality. Below are some of the key strategies commonly 
used: 

8.2.1 Scan-Based Testing 

Scan-based testing is one of the most widely used DFT techniques. It involves embedding 
scan chains (sequential logic elements like flip-flops) into a circuit design, allowing access to 
the internal states of the system during testing. 

●​ Scan Chains: Flip-flops in the design are linked in a series (chain), and through these 
chains, internal signals can be shifted in and out, allowing for easier control and 
observation during testing. This process enables the testing of complex sequential 
circuits that would otherwise be difficult to access.​
 

●​ Scan Mode: The system enters scan mode during testing, replacing the functional data 
path with the scan chain to shift test vectors in and out of the circuit. This makes it 
possible to test internal logic without accessing the internal nodes physically.​
 



●​ Advantages:​
 

○​ High fault coverage.​
 

○​ Simplified access to internal signals.​
 

○​ Enables detection of stuck-at faults, transition faults, and other common logic 
defects.​
 

●​ Challenges:​
 

○​ Additional hardware overhead (scan flip-flops and multiplexers).​
 

○​ Power consumption due to the test activity.​
 

○​ Increased circuit complexity.​
 

8.2.2 Built-In Self-Test (BIST) 

Built-In Self-Test (BIST) is another key DFT strategy where test patterns and diagnostic 
routines are embedded within the system to enable it to test itself. This is particularly useful in 
situations where external test equipment is unavailable or impractical, such as in embedded 
systems or remote environments. 

●​ Self-Diagnostic Capabilities: BIST allows a system to run diagnostic tests on itself, 
generating test patterns internally and then evaluating the results. For example, logic 
BIST is used to test combinational and sequential logic, and memory BIST is used to 
test memory units.​
 

●​ Components of BIST:​
 

○​ Test Pattern Generator: Generates random or pseudo-random test patterns that 
simulate possible fault conditions.​
 

○​ Response Compaction: The results of the test are compressed into a signature, 
a compact representation of the expected behavior, which can be checked for 
correctness.​
 

○​ Error Detection and Reporting: Once the system tests itself, it can report any 
faults or deviations from the expected results.​
 

●​ Advantages:​
 



○​ Enables autonomous testing without external equipment.​
 

○​ Reduces the need for manual testing or additional test hardware.​
 

○​ Useful in mission-critical applications like aerospace, automotive, and medical 
devices.​
 

●​ Challenges:​
 

○​ Increased area overhead for additional test circuitry.​
 

○​ May not provide complete fault coverage for more complex circuits.​
 

○​ Power consumption and performance impact due to BIST logic.​
 

8.2.3 Boundary Scan (IEEE 1149.1, JTAG) 

Boundary Scan is an industry-standard technique for testing the interconnections between 
chips and components on a printed circuit board (PCB) without requiring physical access to the 
connections. Defined by the IEEE 1149.1 standard (also known as JTAG), boundary scan 
allows for testing of the boundary pins of integrated circuits (ICs). 

●​ Test Access Ports (TAP): Boundary scan involves connecting a TAP to the circuit, 
which enables the external test equipment to control and observe the data at the 
boundary pins of the ICs. This provides access to the internal interconnects between 
chips, which can be difficult to probe manually.​
 

●​ Boundary Scan Cells: ICs are designed with boundary scan cells at their boundary 
pins. These cells allow for testing the connections between ICs without needing direct 
access to each pin.​
 

●​ Advantages:​
 

○​ Simplifies the testing of interconnects in densely packed PCBs.​
 

○​ Eliminates the need for expensive probing equipment.​
 

○​ Standardized approach that can be used across various designs and 
manufacturers.​
 

●​ Challenges:​
 

○​ Does not test internal logic of the circuit, just the interconnections.​
 



○​ Limited to digital circuits; does not directly apply to analog components.​
 

 

8.3 Additional DFT Strategies 

8.3.1 Test Pattern Generation (TPG) and ATPG 

Test Pattern Generation (TPG) refers to the process of creating the input vectors (test 
patterns) that will be used to stimulate the circuit under test. Automated Test Pattern 
Generation (ATPG) tools are used to generate efficient test patterns for digital circuits based on 
fault models (e.g., stuck-at faults, transition faults). 

●​ ATPG Tools: These tools simulate faults in the circuit and generate test patterns that are 
likely to detect those faults. ATPG is essential for creating the test vectors needed for 
scan-based testing and other DFT methods.​
 

●​ Fault Simulation: ATPG tools perform fault simulation to verify the effectiveness of the 
test patterns by applying them to the design and checking whether the faults are 
detected.​
 

●​ Advantages:​
 

○​ Generates high-quality test patterns with high fault coverage.​
 

○​ Reduces testing time by minimizing the number of test vectors.​
 

●​ Challenges:​
 

○​ Computationally expensive for large designs.​
 

○​ May require extensive optimization to achieve high coverage.​
 

8.3.2 Design for Manufacturability (DFM) and Design for Reliability (DFR) 

Design for Manufacturability (DFM) and Design for Reliability (DFR) are complementary 
DFT strategies that focus on ensuring the design is optimized for both manufacturing and 
long-term reliability. These strategies involve incorporating test features that make the system 
easier to manufacture and more robust over time. 

●​ DFM focuses on simplifying the manufacturing process, ensuring that the design is 
cost-effective and less prone to defects.​
 



●​ DFR focuses on identifying potential failure points in the system that could impact its 
performance over time, enabling designers to incorporate features that improve 
reliability.​
 

●​ Advantages:​
 

○​ Reduces defects and failures during manufacturing.​
 

○​ Improves product longevity and reduces warranty costs.​
 

●​ Challenges:​
 

○​ Requires a holistic approach to design, involving collaboration between design, 
manufacturing, and quality teams.​
 

 

8.4 Optimizing DFT Strategies for Efficient Testing 

8.4.1 Test Compression 

Test compression is a technique used to reduce the volume of test data that must be generated 
and transmitted during the testing phase. This is particularly useful in large-scale systems where 
generating and transferring large test vectors can be time-consuming and costly. 

●​ Compression Techniques: These include scan vector compression, where 
redundant or repetitive test patterns are removed, and data compaction, where large 
volumes of test data are compressed into more manageable forms without losing fault 
coverage.​
 

●​ Benefits:​
 

○​ Reduces the time and memory required for test data storage.​
 

○​ Minimizes the amount of data transferred during testing, reducing costs.​
 

8.4.2 Testable Design Architecture 

Optimizing the design for testability involves considering testability early in the design process. 
Techniques like hierarchical scan chains, modular test structures, and increased 
observability and controllability at various levels of the circuit can improve both test coverage 
and testing efficiency. 



●​ Hierarchical Testing: Dividing large systems into smaller, modular units that can be 
tested independently reduces the complexity and time required for testing the entire 
system.​
 

●​ Observability and Controllability: Ensuring that all internal signals are either 
observable or controllable during testing can greatly enhance the effectiveness of DFT 
strategies.​
 

 

8.5 Conclusion 

Design for Testability (DFT) is an essential approach in modern electronics, ensuring that 
systems are easier to test, debug, and verify. Strategies like scan-based testing, BIST, 
boundary scan, and test pattern generation have become standard tools in circuit design. 
While these techniques offer significant advantages in terms of fault detection, testing speed, 
and cost reduction, they come with challenges such as increased area overhead and power 
consumption. Optimizing DFT strategies through methods like test compression, hierarchical 
testing, and design for manufacturability can help mitigate these challenges while ensuring 
high-quality and reliable products. 

 


	Chapter 8: Design for Testability Strategies 
	8.1 Introduction to Design for Testability (DFT) Strategies 
	8.2 Common Design for Testability (DFT) Techniques 
	8.2.1 Scan-Based Testing 
	8.2.2 Built-In Self-Test (BIST) 
	8.2.3 Boundary Scan (IEEE 1149.1, JTAG) 

	8.3 Additional DFT Strategies 
	8.3.1 Test Pattern Generation (TPG) and ATPG 
	8.3.2 Design for Manufacturability (DFM) and Design for Reliability (DFR) 

	8.4 Optimizing DFT Strategies for Efficient Testing 
	8.4.1 Test Compression 
	8.4.2 Testable Design Architecture 

	8.5 Conclusion 


