Chapter 4: Work, Energy and Power

4.1 Introduction to Work, Energy and Power

- These concepts describe how physical effort (work) leads to changes in motion or energy and how quickly that energy is transferred (power).
- Widely applied in machines, vehicles, and daily life.

4.2 Work

- Work is said to be done when a force is applied and the object moves in the direction of the force.
- Formula: Work = Force \times Displacement \times cos(θ)
 - \circ θ = angle between force and displacement
- SI Unit: Joule (J)
- Conditions for Work:
 - A force must be applied.
 - o There must be displacement.
 - Displacement must have a component in the direction of the force.
- Positive Work: Force and displacement in same direction (e.g., lifting a box).
- **Negative Work**: Force and displacement in opposite directions (e.g., friction).

4.3 Energy

- Energy is the capacity to do work.
- SI Unit: Joule (J)
- Types of Energy:
 - o **Kinetic Energy**: Energy of a moving object.
 - Formula: KE = ½ mv²
 - o **Potential Energy**: Energy due to position or configuration.
 - Formula: PE = mgh
 - Mechanical Energy: Sum of kinetic and potential energy.
 - ME = KE + PE

4.4 Forms of Energy

- Mechanical Energy
- Heat Energy
- Light Energy
- Sound Energy
- Chemical Energy
- Electrical Energy
- Nuclear Energy

4.5 Transformation of Energy

• Energy can change from one form to another.

• Examples:

- Electric fan: Electrical → Mechanical
- Solar panel: Light → Electrical
- Battery: Chemical → Electrical

• Law of Conservation of Energy:

- Energy can neither be created nor destroyed, only transformed from one form to another.
- o Total energy remains constant in an isolated system.

4.6 Power

- **Power** is the rate of doing work or transferring energy.
- Formula: Power = Work done / Time
- SI Unit: Watt (W)
- Other Units:
 - Kilowatt (kW) = 1000 W
 - Horsepower (1 HP = 746 W)

4.7 Commercial Unit of Energy

- In homes and industries, energy is measured in kilowatt-hours (kWh).
- 1 kWh = 1000 watts × 3600 seconds = 3.6 × 106 J
- **Used for**: Calculating electricity consumption.

4.8 Efficiency

- Efficiency is a measure of how effectively energy is converted from one form to another.
- Formula:

```
o Efficiency (%) = (Useful energy output / Total energy input)
x 100
```

• Always less than 100% due to energy loss (usually as heat, sound, etc.).

4.9 Simple Machines and Work

- Machines help us do work with less effort.
- Use mechanical advantage to multiply input force.
- Examples: Lever, pulley, inclined plane (covered in detail in later chapters).

4.10 Applications in Daily Life

- Using energy-efficient devices saves power.
- Understanding power ratings helps choose appliances (e.g., 60W bulb vs 9W LED).
- Helps in calculating electricity bills.