Chapter 5: Energy-Efficient Components and Architectures in CMOS and
FinFETs

5.1 Introduction

This chapter focuses on identifying and analyzing energy-efficient components and circuit
architectures that are optimized for CMOS and FinFET technologies. With the increasing
demand for high-performance, low-power applications—ranging from mobile and IoT devices to
data centers—engineers must utilize circuit blocks and design topologies that provide
maximum performance per watt.

We will explore logic cells, memory elements, and processor architectures that have been
refined for energy efficiency in both planar CMOS and 3D FinFET processes.

5.2 Problem Statement
Modern ICs must balance:

e High throughput
e Low energy per operation

e Thermal and battery limitations

Key questions:

e What components are most power-hungry?
e Which architectures provide energy efficiency without degrading performance?

e How do FinFET features enhance these components over traditional CMOS?

5.3 Step 1: Energy-Efficient Logic Components

1. Standard Logic Gates (NAND, NOR, XOR):

o Optimized gate sizing and transistor stacking reduce dynamic power.

o Use of minimum-sized transistors for leakage control.

o In FinFETs: Wider effective channel width allows higher drive current with
lower leakage.

2. Complex Gates (AOI/OAI):
o Reduce gate count and interconnects.
o Lower switching activity = lower dynamic power.
3. Transmission Gate Logic:
o CMOS-based pass transistor designs.
o Reduces transistor count in multiplexers, latches, etc.
4. Dynamic Logic (Domino, NORA):
o High-speed but consumes more power—used selectively.

o Often replaced with static logic for better energy efficiency.

In FinFETSs, logic gates offer ~30% lower power for the same performance
compared to CMOS at 22nm.

5.4 Step 2: Energy-Efficient Memory Components

1. SRAM Cells (6T, 8T, 10T):

o 6T standard SRAM optimized for speed and density.

o 8T/10T offer better read stability in low-power FinFET designs.

o FIinFET SRAMs benefit from lower leakage and better variability control.
2. Non-Volatile Memories (eNVM):

o Flash, MRAM, and ReRAM used for standby power reduction.

o MRAM with FinFET integration provides fast, low-leakage solutions.

3. Register Files & CAMs:
o Clock gating and selective read/write reduce power.

o Use of banking and segmenting to isolate inactive regions.

5.5 Step 3: Energy-Efficient Sequential Components

1. Latches and Flip-Flops:

o Clocked elements are major power consumers.

o Use of pulse-triggered flip-flops or clock gating cells.
2. Dual-Edge Triggered Flip-Flops:

o Captures data on both edges — halve clock frequency for same throughput.
3. Retention Flip-Flops:

o Used in FInFET power gating systems to store states during sleep mode.

FinFET-based flip-flops show reduced clock power and leakage compared to
CMOS at iso-performance.

5.6 Step 4: Energy-Efficient Processor Architectures

1. RISC Architectures:
o Simpler instruction set = less decoding logic, fewer transitions.
o Used in ARM Cortex-M, RISC-V embedded cores.

2. In-Order Execution Pipelines:
o Avoid complexity and power overhead of out-of-order logic.

3. Harvard Architecture:

o Separate data and instruction buses reduce contention, improve throughput.
4. Clock and Power Domains:

o Divide processor into smaller, independently clocked sections.
5. Near-Threshold Voltage (NTV) Computing:

o Exploits ultra-low voltage operation in FinFETs to reduce energy per instruction
(EPI).

5.7 Step 5: FinFET Enhancements for Energy-Efficient Design
Design Area FinFET Advantages

Logic Cells Better electrostatic control reduces leakage and improves speed at
lower Vdd

Memory Arrays Higher read/write margin, less variability, compact 8T cells
Clock Network Lower buffer leakage, smaller skew with FinFET clock trees

Sleep Lower off-current for power gating applications
Transistors

Biasing Circuits FinFETs maintain stability even at sub-0.5V biasing

Example: 14nm FinFET SoCs show ~35% power savings with performance
matching 28nm CMOS.

5.8 Step 6: Python Simulation — Energy per Operation Comparison
import numpy as np
import matplotlib.pyplot as plt

Supply voltages
vdd_cmos = 1.0
vdd_finfet=0.8

Capacitance estimates (arbitrary units)
c_cmos = 10e-15
c_finfet = 7e-15

Frequency
f=1e9

Energy per operation (E = C * VA2)
e _cmos = c_cmos * vdd_cmos ** 2
e_finfet = c_finfet * vdd_finfet ** 2

Visualization

components = ['Logic Gate', 'Flip-Flop', 'SRAM Cell']
energy_cmos = [e_cmos, 1.2 * e_cmos, 1.5 * e_cmos]
energy_finfet = [e_finfet, 1.2 * e_finfet, 1.5 * e_finfet]

X = np.arange(len(components))
width = 0.35

plt.bar(x - width/2, np.array(energy_cmos)*1e15, width, label="CMOS")
plt.bar(x + width/2, np.array(energy_finfet)*1e15, width, label="FinFET")
plt.ylabel('Energy per Operation (fJ)')

plt.titte('Energy Efficiency: CMOS vs FinFET")

plt.xticks(x, components)

plt.legend()

plt.grid(True)

plt.show()

5.9 Conclusion

Energy-efficient design relies on the selection and optimization of key components at both
the logic and architecture levels.
Key takeaways:

e CMOS techniques like clock gating, operand isolation, and sizing still apply.

e FinFET-based circuits excel in reducing leakage, operating at lower voltages, and
supporting near-threshold operation.

e Architectures like RISC, Harvard, and dual-edge flip-flops are well-suited for
power-sensitive designs.

e Choosing the right memory, flip-flop, and gate structure can yield significant
improvements in performance-per-watt.

	Chapter 5: Energy-Efficient Components and Architectures in CMOS and FinFETs
	5.1 Introduction
	5.2 Problem Statement
	5.3 Step 1: Energy-Efficient Logic Components
	5.4 Step 2: Energy-Efficient Memory Components
	5.5 Step 3: Energy-Efficient Sequential Components
	5.6 Step 4: Energy-Efficient Processor Architectures
	5.7 Step 5: FinFET Enhancements for Energy-Efficient Design
	5.8 Step 6: Python Simulation – Energy per Operation Comparison
	5.9 Conclusion

