Chapter 6: Implementation and Optimization of Scan Chains for Improved
Testability

6.1 Introduction to Scan Chain Implementation and Optimization

Scan chains are a vital component in Design for Testability (DFT), enabling efficient access to
internal states of digital circuits during testing. They simplify the process of fault detection,
particularly in large and complex integrated circuits (ICs), such as system-on-chip (SoC)
designs. However, their implementation can introduce challenges related to circuit complexity,
power consumption, and performance.

This chapter explores the implementation of scan chains, focusing on best practices and
optimization techniques to improve testability while minimizing design overhead. By optimizing
scan chain architectures, engineers can achieve higher fault coverage, reduce testing time, and
minimize power consumption during the testing phase.

6.2 Principles of Scan Chain Implementation

6.2.1 Basic Structure of Scan Chains

A scan chain is created by connecting flip-flops (or other sequential elements) in a series,
where the output of one flip-flop is connected to the input of the next. This allows for easy
observation and control of internal states during testing. The basic structure of a scan chain
includes:

e Scan-In (Sl): A data input that shifts test vectors into the scan chain.

e Scan-Out (SO): A data output that shifts test results from the scan chain to the external
test equipment.

e Scan Flip-Flops: Flip-flops that are modified to work as part of the scan chain, often
using multiplexers to switch between normal and scan operation.

e Scan Enable (SE): A control signal that enables or disables scan operation, allowing the
system to switch between normal operation and scan testing mode.

6.2.2 Scan Chain Configuration



The configuration of scan chains is a crucial step in ensuring effective testability. The following
aspects must be carefully considered during scan chain implementation:

e Chain Length: The number of flip-flops in the scan chain impacts testing time. A longer
chain requires more time to shift data in and out, potentially increasing test time.
Designers must balance test coverage with scan chain length to minimize testing
overhead.

e Scan Chain Partitioning: For large systems, multiple scan chains may be used to test
different parts of the circuit simultaneously. Partitioning the scan chains effectively can
help reduce scan-in/scan-out time and enhance parallelism in testing.

6.2.3 Incorporating Multiplexers

Multiplexers (MUX) are used to control whether flip-flops operate in their normal mode or are
part of the scan chain. During regular operation, the flip-flops perform normal sequential logic
functions, while in scan mode, they are connected in a shift register configuration. This
multiplexing is essential for controlling test access to the circuit’s internal states.

o Implementation of Multiplexers: Multiplexers are integrated into the flip-flops, allowing
designers to select between the circuit’s functional data path and the scan chain for test
purposes.

6.3 Challenges in Scan Chain Implementation

While scan chains are an essential part of testing digital systems, their implementation presents
several challenges:

6.3.1 Design Complexity and Overhead

The integration of scan chains into a design requires adding additional flip-flops and
multiplexers, which increase the area of the chip and may add complexity to the design. The
extra hardware can impact the performance of the circuit, especially in systems where timing is
critical.

e Area Overhead: Scan chains increase the number of flip-flops and interconnects,
leading to larger designs and potentially higher costs in terms of silicon area and
manufacturing.

e Performance Impact: The addition of scan chains can slightly degrade the performance
of the system, especially when the scan chain is long. Optimizing the length of scan
chains and minimizing the number of multiplexers used can help mitigate performance



overhead.

6.3.2 Power Consumption During Testing

During testing, scan chains can consume significant power due to the activity involved in shifting
data in and out of the chains. High power consumption can be a concern, especially in mobile
and embedded systems where power efficiency is critical.

e Power Optimization: Designers need to implement techniques that minimize power
consumption during scan-based testing. Strategies like test pattern compression and
power gating of unused circuits during testing can help reduce power consumption.

6.3.3 Fault Coverage and Redundancy

While scan chains provide high fault coverage, they may still miss certain types of faults,
particularly in more complex circuits. To achieve maximum fault coverage, additional
techniques such as redundancy (e.g., adding extra scan chains or flip-flops) or enhanced test
patterns are sometimes needed.

e Test Pattern Optimization: Optimizing test vectors and scan chain configuration
ensures that a wider range of faults is detected, including delay faults and transition
faults, which are difficult to detect with simple scan testing alone.

6.4 Optimization Techniques for Scan Chains

6.4.1 Minimizing Scan Chain Length

The length of the scan chain significantly impacts test time and power consumption. By
minimizing the number of flip-flops in a chain, designers can speed up the test process and
reduce power usage.

e Scan Chain Partitioning: Dividing the scan chain into smaller, parallel chains can
reduce the total scan time. By testing multiple parts of the circuit simultaneously, parallel
testing helps optimize the testing process, especially for large SoC designs.

e Dynamic Scan Length Optimization: In some cases, adaptive scan chain lengths can

be used. Based on the specific faults being tested, the scan chain length can be
dynamically adjusted to optimize the testing process.

6.4.2 Reducing Power Consumption



Power consumption during scan chain testing can be minimized through several strategies:

e Power Gating: Power gating techniques involve switching off the power to certain parts
of the circuit during testing to reduce power consumption in unused areas.

e Test Pattern Compression: By compressing test vectors, fewer bits need to be shifted
through the scan chain, reducing power consumption. Test compression techniques can
significantly cut down on both the time and power required to test a system.

e Clock Gating: Clock gating techniques can be used to disable the clock to certain
flip-flops or sections of the scan chain during test operation to reduce dynamic power
consumption.

6.4.3 Improving Fault Coverage

To enhance the fault coverage of scan chains and ensure that more types of faults are detected,
several techniques can be employed:

e Insertion of Redundant Flip-Flops: By adding additional flip-flops or scan chains, it is
possible to increase the observability and controllability of the system, thereby improving
fault coverage.

e Advanced Fault Models: Using more advanced fault models, such as transition faults
or delay faults, in conjunction with scan-based testing can help improve fault detection,
particularly in high-speed circuits.

6.4.4 Minimizing Area and Complexity

Reducing the complexity and area overhead of scan chains is important to maintain the
efficiency of the system. Optimizing the number of flip-flops and multiplexers involved in the
scan chain can help minimize these issues.

e Scan Chain Topology Optimization: Optimizing the interconnects and topology of the
scan chains to reduce the number of components can lead to lower area consumption
and less complexity in the design.

e Multiplexer Optimization: Minimizing the number of multiplexers in the scan chain by
using more efficient multiplexer configurations helps reduce area and power overhead.

6.5 Best Practices for Implementing Scan Chains



e Early Integration: Integrating scan chains early in the design process allows for easier
troubleshooting and testing, reducing the complexity of adding testability features later in
the development cycle.

e Hierarchical Design: For large, complex systems, hierarchical design techniques
should be used to manage scan chain length and test coverage more efficiently. This
may involve breaking the system down into smaller blocks, each with its own scan chain.

e Simulation and Verification: Always simulate the scan chain design and verify fault
coverage with specialized tools to ensure that the scan-based testing strategy meets the
required testing objectives.

e Balancing Scan Chain Length and Performance: Finding an optimal balance between
scan chain length and performance requirements is crucial. Designers should consider
the trade-offs between testing speed, power consumption, and system performance.

6.6 Conclusion

Scan chains are a cornerstone of Design for Testability (DFT), providing efficient access to the
internal states of digital systems during testing. While implementing scan chains adds design
complexity, it offers significant benefits in terms of fault coverage, testing efficiency, and product
reliability. By applying optimization techniques such as scan chain partitioning, power gating,
and advanced fault modeling, engineers can enhance the testability of their designs while
minimizing overhead in terms of area, power, and complexity. As systems continue to grow in
scale and complexity, optimizing scan chains will remain an essential component of effective
testing strategies in modern electronic system design.



	Chapter 6: Implementation and Optimization of Scan Chains for Improved Testability 
	6.1 Introduction to Scan Chain Implementation and Optimization 
	6.2 Principles of Scan Chain Implementation 
	6.2.1 Basic Structure of Scan Chains 
	6.2.2 Scan Chain Configuration 
	6.2.3 Incorporating Multiplexers 

	6.3 Challenges in Scan Chain Implementation 
	6.3.1 Design Complexity and Overhead 
	6.3.2 Power Consumption During Testing 
	6.3.3 Fault Coverage and Redundancy 

	6.4 Optimization Techniques for Scan Chains 
	6.4.1 Minimizing Scan Chain Length 
	6.4.2 Reducing Power Consumption 
	6.4.3 Improving Fault Coverage 
	6.4.4 Minimizing Area and Complexity 

	6.5 Best Practices for Implementing Scan Chains 
	6.6 Conclusion 


