Chapter 14: Packages

14.1 Introduction to Packages
What is a Package?

In Java, a package is a namespace that organizes a set of related classes and interfaces. It is
used to group related classes, interfaces, and sub-packages. Packages help avoid name
conflicts, improve code maintainability, and provide access control.

Packages are essentially a way to organize Java classes into namespaces and allow for easy
management of large codebases.

Why are Packages Important?

e Organize Code: Packages help in grouping related classes and interfaces, making the
codebase cleaner and easier to manage.

e Avoid Naming Conflicts: They prevent name conflicts by differentiating classes with the
same name from different packages.

e Access Control: Packages allow you to control the visibility and accessibility of classes,
methods, and variables.

e Reusability: Classes in packages can be reused across multiple projects without
redefinition.

14.2 Types of Packages

1. Built-in Packages:
Java provides a large number of built-in packages that contain useful classes and
interfaces, such as java.util, java.io, and java.math.

o Example:
The java.util package contains utility classes like ArraylList, HashMap,
and Date.

2. User-defined Packages:
These are packages that are created by the programmer to organize their own classes



and interfaces.

14.3 Creating a User-Defined Package

To create a package in Java, use the package keyword followed by the package name at the
beginning of the Java source file.

Syntax:

package package name;

Example:
Let's say we want to create a package named com.example.util for utility classes.

package com.example.util; // Defining a package

public class MathUtils {

public static int add(int a, int b) {

return a + b;

public static int subtract(int a, int b) {

return a - b;

Here, the class MathUtils is part of the com.example.util package.




14.4 Accessing Classes from a Package

To use a class from a package in another class, you need to import the class using the import
keyword.

Syntax:

import package_name.ClassName;

You can also import all classes from a package using the wildcard (*).
Example:

import com.example.util.MathUtils; // Importing the MathUtils class

public class Main {
public static void main(String[] args) {
int sum = MathUtils.add(5, 3);

int difference = MathUtils.subtract(5, 3);

System.out.printin("Sum: " + sum); // Output: Sum: 8

System.out.printin("Difference: " + difference); // Output: Difference: 2

Alternatively, you can import all classes in the com.example.util package:

import com.example.util.*; // Importing all classes in the package

14.5 Package Naming Conventions



To avoid naming conflicts, Java encourages a specific naming convention for packages:

e Package names are typically written in lowercase.

e Use dot notation to separate different levels of the package hierarchy (e.g.,
com.example.util).

e Package names should be unique, often based on the domain name of the organization.

Example:

e com.companyname.projectname

e org.apache.commons

14.6 Access Control in Packages

Java uses access modifiers to control the visibility of classes, methods, and variables. The
main access levels include:

1. Public: The class or member can be accessed from any other class.

2. Private: The class or member is accessible only within the class itself.

3. Protected: The class or member is accessible within the package and by subclasses.
4. Default (Package-Private): The class or member is accessible only within the same

package (no modifier specified).

Example:

package com.example.ultil;

public class MathUtils {
public static int add(int a, int b) {

return a + b;



private static int multiply(int a, int b) {

return a * b; // This can only be accessed within the MathUtils class

In this example:

e The add() method is public and can be accessed from outside the MathUtils class.

e Themultiply() methodis private and can only be accessed within the MathUtils
class.

14.7 Sub-Packages

Java allows the creation of sub-packages within a package. Sub-packages are useful for
organizing classes into a more structured hierarchy.

Example:

package com.example.util.math; // A sub-package of com.example.util

public class Calculator {
public static int square(int num) {

return num * num;



In this example, com.example.util.math is a sub-package of com.example.util.

To use the Calculator class, you would import it as follows:

import com.example.util. math.Calculator;

public class Main {
public static void main(String[] args) {

System.out.printin("Square of 5: " + Calculator.square(5)); // Output: Square of 5: 25

14.8 Java’s Built-in Packages

Java provides a large set of built-in packages for handling common programming tasks. Some
common packages include:

e java.util: Contains utility classes such as ArraylList, HashMap, Date, etc.

e java.io: Contains classes for input and output operations, such as File,
BufferedReader, BufferedWriter, etc.

e java.lang: Contains fundamental classes such as String, Math, System, etc.
(automatically imported).

e java.math: Provides classes for mathematical operations, such as BigDecimal,
BigInteger, etc.

e java.net: Contains classes for network programming, such as URL, Socket, etc.

Example of Using java.util Package:

import java.util.ArrayList;



public class ListExample {
public static void main(String[] args) {
ArrayList<String> list = new ArrayList<>();
list.add("Apple");
list.add("Banana");

list.add("Cherry");

System.out.printin("List: " + list); // Output: List: [Apple, Banana, Cherry]

14.9 Using Java’s Built-in Packages

Java allows you to use its built-in packages without needing to explicitly define them, as these
packages are already available in the JDK.

Example:

import java.util.Date;

public class DateExample {
public static void main(String[] args) {
Date currentDate = new Date();

System.out.printin("Current date and time: " + currentDate);



14.10 Conclusion
Summary of Key Points:

e A package is a way to organize Java classes into namespaces.

e Built-in packages in Java offer pre-defined classes for common tasks, while
user-defined packages help in organizing your own classes.

e You can import classes from packages into your program using the import keyword.

e Java provides access control mechanisms like public, private, protected, and
default to control the visibility of classes and members.

e Sub-packages allow further organization within a package hierarchy.

Practical Application:

Understanding and using packages is fundamental for writing clean, maintainable, and
organized code. Packages also allow you to manage large projects by logically grouping related
classes, reducing name conflicts, and improving code reusability.



	Chapter 14: Packages 
	14.1 Introduction to Packages 
	14.2 Types of Packages 
	14.3 Creating a User-Defined Package 
	14.4 Accessing Classes from a Package 
	14.5 Package Naming Conventions 
	14.6 Access Control in Packages 
	14.7 Sub-Packages 
	14.8 Java’s Built-in Packages 
	14.9 Using Java’s Built-in Packages 
	14.10 Conclusion 


