Chapter 2: Linux-based Embedded System Component Stack
2.1 Overview of the Embedded System Stack

An embedded system stack is a layered architecture consisting of various software and
hardware components that work together to enable the functionality of embedded systems.
Linux-based embedded systems also adhere to this stack, with each layer playing a crucial role
in the overall performance and functionality. The stack is divided into several layers, each with
distinct responsibilities.

Key Components of the Embedded System Stack:

e Hardware Layer: The physical components such as processors, memory, input/output
devices, and peripherals.

e Bootloader Layer: A small program responsible for initializing the hardware and loading
the operating system.

e Kernel Layer: The Linux kernel that manages hardware resources and provides core
system functionality.

e Middleware Layer: Libraries and software packages that provide higher-level functions
such as networking, file systems, and inter-process communication.

e Application Layer: User-specific applications and services that interact with the
middleware to perform desired tasks.

2.2 Hardware Layer

The hardware layer consists of the physical components that enable the embedded system to
function. These components are typically customized or designed to fit the specific application
needs of the embedded system.

Components in the Hardware Layer:

e Microcontroller (MCU) / Microprocessor (MPU): The central processing unit (CPU)
that executes instructions. MCUs are used in smaller, less resource-intensive systems,
while MPUs (often ARM-based) are used in more powerful systems.

e Memory: The memory is critical for storing program code, data, and buffers. Embedded
systems usually include a combination of volatile (RAM) and non-volatile (Flash)
memory.



Input/Output Interfaces: Peripherals like GPIOs, UART, 12C, SPI, PWM, ADC/DAC
interfaces that provide communication between the embedded system and external
devices.

Communication Interfaces: For networking and communication, interfaces such as
Ethernet, Wi-Fi, Bluetooth, and USB are used, depending on the system’s requirements.

2.3 Bootloader Layer

The bootloader is the first piece of software that runs when an embedded system is powered on
or reset. It is responsible for initializing the hardware, loading the kernel, and transferring control
to the operating system. The bootloader runs in a low-level, resource-constrained environment,

and in embedded Linux systems, it plays a crucial role in ensuring the OS boots correctly.

Popular Bootloaders:

U-Boot: One of the most widely used bootloaders for embedded systems. It supports a
wide range of architectures and provides features like network booting, multi-boot, and
support for various file systems.

Das U-Boot (U-Boot): A more specific version of U-Boot that is used in various
Linux-based systems.

Barebox: A bootloader designed for embedded systems with an emphasis on ease of
use and modularity.

Bootloader Responsibilities:

Hardware Initialization: Initializes components like memory, clocks, and serial ports.

Kernel Loading: Loads the Linux kernel image into memory and prepares it for
execution.

File System Setup: In systems where the kernel needs to access files during boot, the
bootloader sets up the root file system.

2.4 Kernel Layer

The kernel layer is the heart of any Linux-based embedded system. It provides essential
services like process management, memory management, device drivers, and communication
between hardware and software.

Core Functions of the Linux Kernel:



Process Management: Manages the scheduling of tasks, multitasking, and ensures
efficient CPU usage across processes.

Memory Management: Allocates and frees memory for processes, ensuring that each
process gets the required resources without affecting others.

Device Drivers: The kernel includes device drivers that enable communication with
hardware peripherals such as sensors, displays, and network interfaces.

System Calls and Inter-Process Communication (IPC): Provides a mechanism for
processes to communicate and share data, enabling multi-threaded, multi-process
environments.

Kernel Modifications for Embedded Systems:

Minimal Configuration: Embedded Linux systems often require a minimal kernel
configuration. Unused features, such as support for certain file systems or hardware
interfaces, can be disabled to reduce the kernel’s size and resource consumption.

Real-Time Capabilities: For systems requiring real-time operations, patches like
PREEMPT-RT are applied to enhance the kernel’s real-time behavior by reducing
latency.

2.5 Middleware Layer

The middleware layer sits on top of the kernel and provides additional functionality to support
higher-level system services. This layer includes various software libraries and frameworks that
help manage complex embedded tasks like networking, file systems, device management, and

more.

Key Components of the Middleware Layer:

Device Drivers: While the kernel includes basic device drivers, middleware components
may include specific drivers for higher-level components, such as USB, Bluetooth, or
camera modules.

Networking Stack: The Linux networking stack allows embedded systems to
communicate over networks using protocols like TCP/IP. It includes utilities like netfilter,
iptables, and network configuration tools.

File System Support: Middleware includes file system drivers (ext4, FAT, etc.) to enable
file handling. In embedded systems, file systems need to be optimized for small sizes



and quick access times.

Middleware Frameworks: Frameworks like GStreamer, OpenSSL, or MQTT provide
specialized services for multimedia, security, and loT communication.

2.6 Application Layer

The application layer consists of the user applications and services running on the embedded
system. These applications interact with the kernel and middleware to perform specific tasks.
Unlike desktop Linux systems, embedded Linux systems often run a single application or a few
lightweight applications optimized for their specific purpose.

Key Components of the Application Layer:

User Applications: These are the custom programs developed to handle the system's
intended task, such as controlling sensors, displaying information on a screen, or
processing data from external sources.

Shell: In embedded Linux systems, the shell provides a command-line interface for
interacting with the system. BusyBox is commonly used to provide lightweight shell
utilities.

System Services: These include background tasks or daemons that provide essential
services, like logging, networking, or managing hardware.

Application Development in Embedded Linux:

Cross-Compiling: Embedded Linux systems typically do not have the resources to
compile code locally, so applications are cross-compiled on a host system (typically a
PC) before being transferred to the embedded device.

Lightweight Libraries: Applications in embedded systems often use lightweight libraries
like uClibc or musl libc instead of the full GNU C Library (glibc) to reduce memory usage.

2.7 Communication Between Layers

Communication between the various layers of the embedded system stack is crucial for the
smooth operation of the system. Each layer relies on a specific interface to interact with the
layers below and above it.

Key Communication Mechanisms:



e System Calls: User applications make system calls to interact with the kernel for tasks
like file access, process management, and hardware interaction.

e Inter-Process Communication (IPC): In multi-process systems, IPC mechanisms like
message queues, shared memory, and semaphores allow different processes to
communicate.

e Device File System (devfs): The device file system allows user-space applications to
interact with hardware components using device files (e.g., /dev/ttyUSBO for a serial
port).

e Network Communication: Networking protocols in the middleware layer enable
communication between embedded systems and remote devices or networks.

2.8 Conclusion

The Linux-based embedded system stack offers a modular, flexible, and highly customizable
architecture that is suitable for a wide range of embedded applications. From the hardware and
bootloader to the kernel, middleware, and applications, each component plays a vital role in
ensuring efficient, real-time operation and seamless communication within the embedded
system. Understanding the stack is crucial for engineers working on embedded Linux
development, as it allows for better system optimization, scalability, and customization.



	Chapter 2: Linux-based Embedded System Component Stack 
	2.1 Overview of the Embedded System Stack 
	2.2 Hardware Layer 
	2.3 Bootloader Layer 
	2.4 Kernel Layer 
	2.5 Middleware Layer 
	2.6 Application Layer 
	2.7 Communication Between Layers 
	2.8 Conclusion 


