

Chapter 4: Low Power Design Strategies and Techniques in Advanced Technologies

4.1 Introduction

This chapter discusses **advanced strategies** and **design techniques** to minimize power consumption in modern CMOS and FinFET-based integrated circuits. As device scaling approaches atomic limits and power constraints dominate design decisions, engineers must adopt sophisticated methods at the **device, circuit, architecture, and system** levels.

Both **digital** and **analog** circuits require customized approaches to achieve low power while maintaining performance, area, and reliability requirements.

4.2 Problem Statement

The key challenge is to **reduce both dynamic and static power consumption** across operating conditions without compromising performance or increasing cost and area significantly. In deeply scaled technologies:

- Leakage currents grow exponentially.
- Dynamic power reduction conflicts with speed.
- Analog blocks suffer from reduced voltage headroom and poor linearity.

Hence, **multi-domain techniques** are necessary.

4.3 Step 1: Core Principles of Low Power Design

1. Minimize Supply Voltage (Vdd):

- Dynamic power $\propto V^2 V^2$
- Leakage $\propto e^{-Vt/V_{th}} \propto e^{-V_t/V_{th}}$
- But reducing Vdd reduces performance and noise margins.

2. Reduce Switching Activity (α):

- Use encoding schemes, signal gating, and efficient logic styles.

3. Lower Capacitance (C):

- Optimize layout and interconnects.
- Use smaller gates and fewer buffers.

4. Reduce Frequency (f):

- Employ clock gating and dynamic frequency scaling.

5. Leakage Management:

- Power gating, multi-V_t cells, body biasing.
-

4.4 Step 2: Techniques in CMOS-Based Digital Circuits

1. Dynamic Voltage and Frequency Scaling (DVFS):

- Adjusts voltage and frequency at runtime based on workload.
- Used in processors, SoCs, and smartphones.

2. Clock Gating:

- Disables clock to idle functional blocks to reduce dynamic power.

3. Multi-V_t Design:

- Combines high-V_t (low leakage, slow) and low-V_t (fast, leaky) transistors.

4. Power Gating:

- Disconnects blocks using sleep transistors when not in use.
- Saves leakage at the cost of wake-up latency.

5. Operand Isolation:

- Prevents unnecessary switching in data paths.

6. Subthreshold Logic:

- Operates transistors in subthreshold region for ultra-low-power (IoT).

Example: ARM Cortex-M series uses DVFS + power gating + clock gating for ultra-low-power embedded processing.

4.5 Step 3: FinFET-Specific Power Strategies

FinFETs inherently improve efficiency due to better gate control, but they still require design techniques:

1. Near-Threshold Computing (NTC):

- Operates at voltages close to threshold (~0.3–0.5V).
- Achieves massive power savings at the cost of speed.

2. Back Biasing (Dynamic Body Biasing):

- Adjusts threshold voltage dynamically to manage performance/leakage trade-offs.

3. Fine-Grain Power Domains:

- Divides SoC into small blocks with independent power rails.
- Reduces leakage and enables aggressive DVFS.

4. Custom Cell Libraries:

- FinFET standard cells designed for ultra-low Vdd operation.
 - Trade-off between drive strength and leakage.
-

4.6 Step 4: Low Power Techniques in Analog Circuits

Analog circuits cannot scale Vdd aggressively due to signal integrity. Power-saving methods include:

1. Current Reuse:

- Reuse current in multiple blocks (e.g., gm boosting techniques).

2. Bias Optimization:

- Use low-current biasing, adaptive biasing based on signal level.

3. Switched Capacitor Techniques:

- Eliminate power-hungry resistors using capacitive filtering.

4. Low-Voltage Amplifier Architectures:

- Folded cascode, telescopic op-amps, inverter-based op-amps.

5. Programmable Gain Blocks (PGAs):

- Use digital control to reduce gain stages when not required.

Example: Low-power biomedical devices use subthreshold biasing in analog front ends to extend battery life.

4.7 Step 5: Combined Strategies for SoC-Level Power Management

Domain	Techniques
Digital	DVFS, clock gating, operand isolation, multi-Vt cells
Memory	SRAM cell sizing, bitline segmentation, sense amp shutdown
Analog	Current reuse, low-bias techniques, dynamic biasing
System	Adaptive voltage scaling, workload prediction, thermal throttling
Fabric	FinFET libraries, physical-aware synthesis, RTL power modeling

4.8 Step 6: Python Simulation – Power Impact of DVFS

```
import numpy as np
import matplotlib.pyplot as plt
```

```
# Parameters
C = 5e-12 # Capacitance (pF)
alpha = 0.5
```

```

frequencies = np.linspace(0.1e9, 2.0e9, 100) # 100 MHz to 2 GHz
voltages = [0.6, 0.8, 1.0, 1.2] # DVFS levels

plt.figure()
for Vdd in voltages:
    power = alpha * C * (Vdd ** 2) * frequencies
    plt.plot(frequencies * 1e-9, power * 1e3, label=f'Vdd={Vdd}V')

plt.xlabel('Frequency (GHz)')
plt.ylabel('Power (mW)')
plt.title('Dynamic Power under DVFS')
plt.legend()
plt.grid(True)
plt.show()

```

4.9 Conclusion

Modern low-power design in CMOS and FinFET requires a **multi-level strategy**, combining:

- Voltage and frequency scaling
- Gating techniques
- Smart biasing
- Domain-specific design techniques

FinFETs provide an efficient hardware foundation, but **intelligent design strategies** are essential to fully exploit their potential.

Designers must choose techniques based on:

- Application domain (IoT, mobile, server)
- Performance requirements
- Area and power budgets