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Lecture -19  

Warshall’s Algorithm for Computing Transitive Closure 

Hello everyone. Welcome to this lecture. In this lecture we will continue our discussion 

regarding how to compute the transitive closure. So, we will discuss the efficient algorithm given 

by Warshall for doing the same.  

(Refer Slide Time: 00:37) 

 

So, just to recap this was your naive algorithm for computing the connectivity relation. So, you 

are given as an input the matrix for your original relation R (MR) and from that we constructed 

the matrix for the relation R* (MR*) provided R is defined over a set consisting of n elements. So, 

R defined over set A consisting of n elements. We introduced the Boolean matrix operation in 

the last lecture.  

 

And we saw that overall to compute the matrix for different powers of R it will cost you n4 

Boolean operations. So, now our goal is how we can get an algorithm to compute the matrix for 

the connectivity relationship with n3 Boolean operations. 

(Refer Slide Time: 01:33) 
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So, here is the Warshall’s algorithm for doing the same. So, the first thing that we are going to do 

is for simplicity we are going to rename the elements of the set A from a1 to an as 1 to n. So, even 

though the set is for instance might be a set of n cities we will be attaching the labels 1 to n to 

those n cities. So, we will be now instead of calling a1 to an we will be now calling the elements 

of A as 1 to n. This is just for simplicity and understanding. 

 

Now the idea behind the Warshall’s algorithm is that we are going to define a sequence of 

matrices where the matrix W0 is the initial matrix namely the matrix for the relation R (MR) 

given to you. And from that we are going to construct a sequence of matrices, W1, W2 up to Wn 

and we are going to stop with Wn and Wn will be the matrix for your relation R*. So, let us see 

the definition of the kth matrix in this sequence.  

 

So, k here ranges from 1 to n. So, the i, jth entry of this kth matrix I am denoting by this notation 

(wi,j
(k)) . So, you have w i, j or i j, and in the superscript I have is k within the parenthesis. So, I 

will have the entry number i, j in different W matrices. So, the version of the W matrix that I am 

focusing on will be k. So, that is why k will be superscript and within that kth version of the W 

matrix i, jth entry will be denoted by this subscript indices i and j.  

 

So, the i, jth entry in matrix Wk, wi,j
(k)

  will be 1 will be defined to be 1 provided the following 

holds.  
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If there is a path of some length, I stress the length is not important. If there is a path of some 

length from node i to node j in your original graph such that all internal nodes along the path are 

within the set 1 to k. Now what do we mean by internal nodes? By internal nodes I mean the 

intermediate nodes in that path.  

 

If there are no intermediate nodes that is fine, I may have a direct edge from the node i to node j. 

That is fine. The condition here is that if at all there are any internal nodes along the path from 

the node i to j they should be within the set 1 to k. That means only the nodes 1, 2, 3 or k are 

allowed as intermediate nodes in that path from the node i to j. If such a path is there I will say 

that the i, jth entry in the matrix Wk will be 1 otherwise 0.  

 

So, pictorially, if you have such a path like this, where all intermediate nodes are restricted 

within the set 1 to k, I will say the entry is 1 in the i, jth entry Wk matrix is 1. So, couple of 

common confusions which has come to the student when we give this definition. First one is as I 

said here there is no restriction on this path length. This path could be of length 1, that means it 

could be a direct edge in which case it is not violating the condition.  

 

Because the conditions says that if at all the intermediate nodes are there in this path they can be 

only node number 1 or node number 2 or node number 3 or node number k. That means the 

second restriction here is that it is not necessary that the path should be of length k. That means it 

is not required that you should have node number 1 somewhere node number 2 somewhere node 

number 3 somewhere node number k somewhere and then you come to node j. 

 

No, that is not the interpretation of this definition. The definition is a conditional requirement or 

requirement is that if at all intermediate nodes are there, first of all there can be any number of 

intermediate nodes. Of course they cannot be more than k intermediate nodes because the only 

intermediate nodes which are allowed in the path which you are considering in the matrix Wk are 

the nodes now the nodes 1, 2 up to k. 

(Refer Slide Time: 06:31) 

265



 

That is the definition of the matrix Wk. So, before proceeding to the Warshall’s algorithm, let me

give you an example to make clear what exactly I mean by these Wk matrices. So, imagine this is 

your given relation R. So, the diagram or the directed graph for this relation is as follows. So, the 

nodes will be 1, 2, 3, 4. Since 1 is related to 4 you have this directed edge, 2 is related to 1 you 

have this directed edge and so on.  

 

We start with the matrix W0, which is the matrix for your relation R (MR) . So, what I have done 

here is that I have just added the entry 1 for (i, j) pair if i is an edge to the node j otherwise the 

entry is 0. Now let us see the matrix W1 here. How do we compute matrix W1? Forget about it. 

The interpretation of W1 matrix is that the i, jth entry will be 1 if a path with only node 1 as 

intermediate node is present from i to j.  

 

So, it turns out that if I say for instance the first three columns for the first row then they will be 

0, 0, 0. Why so? Because; there is no path from the node 1 to the node 1 where only intermediate 

nodes are the node number 1. So, you do have a path here from the node 1 to node 1. So, you can 

go via 1 to 4 and then you can go from 4 to 3. And then you can go from 3 to 1.  

 

That is a path from 1 to 1. But what are the intermediate nodes here? So, you started with 1, you 

go to 4, you go to 3 and then you go to 1. So, well there is a path from node 1 to 1. But what are 

the intermediate nodes? The intermediate nodes here are node number 3, node number 4. But 
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they are not allowed to be considered when you are considering the paths in matrix W1. This will 

be considered as a valid path when the possible intermediate nodes are nodes 1, 2, 3, 4.  

 

Namely when you are considering going to consider the matrix number W4, this will be 

considered as a valid path. But right now when you are considering paths with respect to the 

matrix number W1, this is not a valid path, this is not allowed here. This is not why 1, 1 is 0 here. 

In this, due to the same reason if I consider say for instance the entry number 2, 2 it is 0. Because 

even though I have a path from 2 to 2, you can go from 2 to 1, you can go from 1 to 4, you can 

go from 4 to 3. Sorry here you have no path, sorry. So, the entry number 2, 2 anyhow will be 0.  

 

So, let us see a path which is not allowed as a valid path in matrix number W1. So, if I consider 

let me show why this entry 2, 4 is becoming 1 here. So, the entry 2, 4 was 0 in matrix 0, W0. 

Because there is no direct edge from 2 to 4, but now since I am allowing node 1 to be included as 

an intermediate node, I can see that there is a path from node number 2 to node number 4 going 

through this intermediate node 1.  

 

That means once I allowed node number 1 as possible intermediate node, I can get a valid path 

and that is why node is entry 2, 4 becomes 1 here and then you can verify that other entries are 0, 

will remain 0 here. Now let us see whether there exist, whether I will get any update in matrix 

W2. That means now in W2 I am allowing you to include node number 1 and node number 2 as 

intermediate nodes between any ai and any aj.  

 

It turns out that if I include node number 1 and node number 2 as possible intermediate nodes the 

status of any i, j pair does not change when I go from W1 to W2. But when, I go from W2 to W3, 

then the status of this entry 4, 1 changes. So, the 4, 1 entry was 0 in the previous matrix, but now 

it is becoming 1 when I am allowing you to include node number 3 as well as a possible 

intermediate node and why so?  

 

Because you see here that I do have a path from the node number 4 to node number 1. The path 

is as follows, you go from 4 to 3, you go from 3 to 1 then you go from 1 to 4 and what are the 

intermediate nodes here? The intermediate nodes are 3, 1. And, 3 and 1 are allowed to be 
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intermediate nodes when you are considering matrix W3. See the idea here is that as I keep on 

going to the next sequence of matrix and I am allowing you to include more and more new 

intermediate nodes as valid intermediate nodes in the path from i to j.  

 

So, in matrix W2 I was not allowing you to include node number 3. I was only allowing you to 

include node number 1 and node number 2. But when I go to matrix W3 I will be giving you 

more flexibility. I am giving you the flexibility to even include node number 3 along with node 

number 1 and node number 2 as possible intermediate nodes. Now you can check that when I 

update W3 to W4, the entry 1, 1 becomes 1 which was 0 in the previous matrix.  

 

That means as long as I allow you only nodes 1, 2 and 3 as intermediate nodes I will say there is 

no valid path from 1 to 1 going through only these three intermediate nodes. But as soon as I 

allow you to include node 4 as a possible intermediate node I will say that there exist a valid path 

from 1 to 1 and now I can stop here with W4. That will be my matrix for R* and this is because 

you can check that only those nodes which are reachable from any other node for those particular 

entries the i, jth entry will become 1 here in W4. Whereas the 0 entries means that there exists no 

path from the node i to node j.  

(Refer Slide Time: 14:34) 

 

So, now Warshall’s algorithm boils down to the following that how exactly I am going to update

my matrix Wk - 1 to the matrix Wk and as per my definition the i, jth entry in the matrix, Wk-1 is 1 
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provided I have a valid path satisfying the restriction that the intermediate nodes are within the 

subset 1 to k – 1 and I want, assuming I have already computed matrix Wk-1, my goal is how to 

find out the matrix Wk, where, I am allowing you to include node number k as well, as a possible 

intermediate node. 

 

So, the update is very clever. It is done as follows. There can be two possible cases. If your i, jth 

entry in the matrix Wk - 1 is 1 then I can simply say that i, jth entry in matrix Wk will also be 1 

and this is because any valid path from node i to j where the intermediate nodes are within the 

subset 1 to k - 1 can also be considered as a valid path, where the intermediate nodes are 

restricted within the subset 1 to k.  

 

And this is because as per the definition of matrix Wk valid paths are not supposed to have all the 

nodes in the set 1 to k. The definition says that the path will be valid if at all the intermediate 

nodes are within the subset 1 to k. It will not have all the nodes in the set 1 to k. So, it is fine if I 

do not include node k in a path from i to j. If such a path excluding node k is also already present 

and known to exist in the previous matrix Wk - 1, I can say that that is still a valid path in the 

matrix Wk.  

 

And I can check whether the i, jth entry in the matrix Wk - 1 is 0 or 1. If it is 1, I can simply copy 

that entry in the new matrix. The second case will be as follows. My claim here is that if in the (k 

– 1)th matrix the i, jth entry is 0. That means there was no valid path from the node i to node j 

where all intermediate nodes are restricted to the subset 1 to k - 1. No such path was there. Then 

what I will check is the following.  

 

I will check whether there exists a path from the node i to k where all the intermediate nodes are 

within the subset 1 to k - 1. So, that will be done by checking whether the i, kth entry in the (k – 

1)th matrix is 1 or not. That means, I am checking whether there exists a valid path from the 

node i to k in the k – 1th matrix. And I will check whether there exists a valid path from the node 

k to the node j in the k - 1th matrix.  

 

Now what I can say is if these two paths individually are guaranteed to exist then if I combine or 
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if I merge these two paths then that will be considered as a valid path from the node i to node j 

passing through all the intermediate nodes that were there in the previous paths plus a new 

intermediate node namely node number k and this will be considered as a valid path for Wk 

matrix.  

 

I stress this will not be considered as a valid path for the Wk - 1 matrix because in Wk - 1 matrix 

node k is not allowed as a possible intermediate node. Node k can be allowed as a valid 

intermediate node only in the paths considered in the matrix Wk. So, intuitively what I am saying 

is that in the absence of intermediate node k there was no path from the node i to node j. But as 

soon as I include the possibility of having node k as a valid intermediate node I can say that a 

path from i to j is there, provided there is a path from i to k and individually a path from k to j 

which is equivalent to checking the conjunction of these two conditions. I have to check whether 

the entry number i, k and the previous matrix is 1 or not and whether the entry k, j is 1 or not in 

the previous matrix. If both of them are 1, I can conclude that the entry i, j in the new matrix will 

be 1. That is the intuition for the update in case two and that is a clever intuition.  

 

So, what I can say is that I can summarize the two cases for updating the i, jth entry from the 

previous matrix to the new matrix as follows. If in the previous matrix i, jth entry is already 1, I 

will say that even in the new matrix the i, jth entry will be 1. Else I will check whether the i, kth 

entry as well as the k, jth entry are simultaneously 1 in the previous matrix and if that is the case 

I can say that i, jth entry in the updated matrix is also 1.  

 

And what will be the cost for performing these operations? So, this will need constant amount of 

effort because you just need to go and check the i, jth entry of the previous matrix and in the 

same way you can go and just check the i, kth entry of the previous matrix and the k, jth entry of 

the previous matrix we just need to do two matrix lookup, which will be costing you cost amount 

of effort. That means to do this update operation you just need to perform a constant amount of 

operations. And how many such i, j pairs are there? 

 

There are n2  i, j entries, for each i, j update you have to spend a constant amount of effort O(1) 

and that is why for n2 entries the overall update cost will be n2.  
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So, this is different from the way we performed update in the naive algorithm. In the naive 

algorithm we were naively computing the higher powers of R from the matrix of the previous 

power of R. And each update was costing us n3. But here we are not doing a naive update over 

matrices, W0, W1, Wk, Wn have different interpretations. And due to the different interpretation 

the update from Wk - 1 to Wk will be now costing us only n2 effort instead of n3 effort.  

 

So, now let us put together everything and get the pseudo code for Warshall’s algorithm. I am

retaining the update operation of the Warshall’s algorithm. How do you update update the k - 1th 

matrix to get the kth matrix? So, the input here will be the matrix for your original relation R and 

now what I will do is I will run 3 loops each ranging from 1 to n and the update operation that I 

am going to perform is as follows.  

 

I am just copying the update operation as it is, removing all the subscripts and superscript 

notation. So, W[i, j] denotes the updated i, jth entry and how it is updated? I check whether the 

previous i, jth entry is 1 or not or if the i, kth entry as well as the k, jth entry are simultaneously 1 

in the previous matrix or not. If that is such case I will update W[i, j] from 0 to 1. Otherwise I 

will set W[i, j] to 0 and this I have to do for k = 1 to n.  

 

So, it takes care of the fact that I am doing the update operation n times and for each time I am 
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doing the update for each of the n2 entries of the form i, j. And then finally I will output the W 

matrix which will be the matrix for my connectivity relation. And it is easy to see that this 

overall operation algorithm will cost you only O(n3) effort. Because there are three loops each 

running from 1 to n.  

 

So, that brings me to the end of this lecture. Just to summarize in this lecture we saw the 

Warshall’s algorithm for computing the connectivity relationship which is better than our naive 

algorithm for computing connectivity relationship. Thank you.  
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