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Tutorial 2: Part 1 
 

Hello everyone, welcome to the part 1 of tutorial 2. So let us start with question number 1.  

(Refer Slide Time: 00:27) 

 

Here, you are supposed to find out whether the following argument is valid or not. So you are 

given some premises and conclusion. So the first thing that we have to do is we have to convert 

everything in terms of predicate functions. So we introduce appropriate predicates here. So of 

course, the domain is explicitly not given here. But domain, the implicit domain here is the set of 

students.  

 

So the first statement here, the premise here is some math majors left the campus for the 

weekend. So it is easy to see that this is an existential quantified statement, it is not making an 

assertion about all the math majors. But let us first decide what are the predicates that we need 

here. So the assertion is about math majors. So let M(x) be the predicate which is true if the 

student x is a math major.  

 

173



And we are saying something regarding whether he has left the campus for the weekend or not. 

So that is the second property for the subject x. So that is why I introduce a predicate the W(x) 

which is true, if the subject x or if the student x is left for the weekend. And I am making a 

statement that there is some student x for which both these conditions are true, so that is why this 

is an existentially quantified statement with conjunction inside. 

 

The second statement here or the premise here is that all seniors left the campus for the weekend. 

So this is a universally quantified statement. And if you see clearly or closely here, the 

interpretation of this statement is that, if a student x is senior then he has left the campus. So 

there is an implicit implication here and that is why this premise can be represented as ꓯ x, S(x) 

→ W(x).  

 

The conclusion that I am making here is, some seniors that means existentially quantified 

statement, are math majors. That means at least one student is there for which the property that 

he is a math major as well as, he is a senior are true. Now we have to verify whether this is a 

valid argument and as per the definition it will be a valid argument if, based on the premises I 

can draw the conclusion for every possible domain. 

 

However, it turns out that this is not a valid argument and we can give a counterexample. You 

can give multiple counter examples here. Even if you show one counter example that is sufficient 

to show that this argument form is not valid. So the domain that I consider is the following 

imagine you have a college where you have 3 students x1, x2, x3. And say with respect to those 3 

students the status of the 3 predicate functions are as follows.  

 

For x1, the property M is true, W is true, but S is false. Student x2, the property M is false, 

property W is true and the property S is true and so on. Now you can verify that with respect to 

this domain and this assignment, the premises are true. Indeed there exists a student for which 

the property that he is a math major and he has left for the weekend, he has left the campus for 

the weekend are both true.  
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Namely x1 is one such student. And similarly the second premise namely all seniors have left the 

campus is also true. So who are the seniors here? The seniors are x2 and x3. And indeed x2 has 

left the campus and x3 has also left the campus. So both your premises are true but what about 

the conclusion, is there any student who is a math major as well as senior? Well, it turns out the 

answer is no. That means my premises are true here, but my conclusion is false and that is why 

this is a invalid argument. 

(Refer Slide Time: 04:54) 

 

Let us see question number 2. In this question, you are given two defined or two predicates 

which are defined for you. I(x) denotes that a stamp collector has stamp x in her collection and 

F(x, y) denotes that stamp x is issued by country y and you have to express the statement that this 

collector has exactly one stamp issued by each African country. So I am making a statement 

about a specific collector and I want to state that, for each African country, she has exactly one 

stamp issued by that country in her collection. So, of course my domain here is set of all of 

African countries. So if you recall from the lecture whenever we face this scenario where we 

want to represent a property p is true for exactly one element of the domain then there are two 

things which we have to represent. The first thing; that the property is true for at least one 

element of the domain.  

 

In this case, the property is that for every African country, there is one stamp at least issued by 

that country, which is there in the collection of the collector. That is the first part here, which is 
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represented by this expression. So, this expression means that for every African country y, there 

is at least one stamp x, such that the stamp x was issued by that country y and the collector has 

that stamp x. 

 

For the moment forget about what is there in the remaining part of the expression forget it. Just 

focus on this part of the expression. But this is not what we want to represent because I cannot 

stop with this expression because this expression also means that there might be multiple x 

values for the same y, for the same country y where those other x stamps are also issued by the 

same country y and the collector has those other x stamps in her collection. 

 

That is not what we want to represent. We want to represent that exactly one value of x or one 

stamp x is there for each country y. So that is why we have to put this second part of the 

expression. For the moment forget about this negation. And whatever is there before the 

conjunction forget about that as well. The second part of the expression denotes that, there can be 

other stamps x’ issued by the same country y and which is also there in the collection of the 

collector and you see I have very carefully put the parentheses here. 

  

The scope of this y is still covered by this ꓯ y, the scope of this universal quantification is carried 

over to this y as well. And the scope of this x’, this x’ is again within it is a nested quantification 

here, there exists x prime it is nested quantification falling within this ꓯ y. So the second part of 

the color expression denotes that there might be other stamps x’ issued by the same country y 

which can be there in the collection of the collector.  

 

But I do not want that to happen that is not what I want to represent. So that is why I put a 

negation here and if I put a negation that means there cannot be any other stamp x’ different from 

x, which is also there in the collection of the collector and x’ was issued by the African country 

y. And that is why the conjunction of these two things represents the required statement. 

 

Of course, you can simplify this, apply the De Morgan’s law and take this negation inside

convert everything, make everything in the form of an implication and so on that also you can do 

but even if you write this expression, that is correct. 
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Part a of question 3, asks you to do the following. It asks you to give an example of a predicate 

P(n) over the domain of non-negative integers such that the proposition P(0) is true, but the 

universal quantification ꓯ n P(n) → P(n+1) is false. So if you want to make P(n) → P(n+1) to be 

false, ꓯ n that does not mean you have to make it false for every value of n in the domain. 

  

Remember the meaning of this universal quantification is that it will be true for all the universal 

quantification will be true if it is true for every value of n in the domain. But even if it is false for 

one value of n in the domain that shows that this universal quantification is false. So here there 

can be multiple examples of such a predicate P. A very simple example is the following. 

 

Say my property P is that integer n is even. When I substitute n = 0, the resultant proposition is 

that 0 is an even integer, which is a true proposition but what about the statement P(0) → P(1). It 

is false, because P(0) is, if 0 is even → 1 is odd. Which is clearly a false implication and that 

means, since P(0) → P(1) is false, ꓯ n P(n) → P(n+1) is automatically false. It does not matter 

that P(1) → P(2), this is true.  

 

Because P(1) is false, P(2) is true, false → true is true. Whereas P(2) → P(3) is false and so on. 

So I have a statement here which is, for which this universal implication is not coming out to be 

true for every value of n in the domain and that is why this is an example of such a predicate. 
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The part b of the question is an opposite of part a here. You are asked to give a predicate Q, such 

that Q(0) is false, but the universal implication Q(n) → Q(n+1) is true.  

 

So now my example here is that property Q(n) is defined that integer n is positive. It turns out 

that Q(0) is false, because Q(0) is the proposition that 0 is positive and definitely 0 is not 

positive. So, this proposition is false, but it turns out that Q(0) → Q(1) is true. Because Q(0) is 

false the false implies anything is true and now any statement of the form Q(n) → Q(n+1) 

everything will be true, that means now I can say that this universal quantification is true. 

(Refer Slide Time: 12:33) 

 

Now let us see question number 4. Here I have to show or I have to either prove or disprove that 

the left hand side expression implies the right hand side expression. So you see the left hand side 

expression, I have explicitly added the parenthesis here, so the x within the P and x within the Q 

are different here whereas in the right hand side the x both within P and Q are the same. Because 

both of them are covered by the same ‘there exist’. 

 

Whereas, in the left hand side, the first x is covered by the first ‘there exist’ (ꓯ ) and the second x 

is covered by the second ‘there exist’ (ꓯ ). The informal way to interpret the statement is if you 

are given that property P is true for some element in the domain and if you are given that 

property Q is true for some element of the domain, then can you conclude that both P and Q 

property are true for some element of the domain. 
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And this need not be true. I can give you a very simple counter example, imagine a domain 

where you have two values of x possible and say property P is true for x1, but false for x2 

whereas, Q is false for x1 and true for x2. In this case, you can check that your left hand side is 

true, because indeed the property P is true for at least one value of the domain and indeed the 

property Q is true for at least one value of the domain.  

 

But that does not mean that it is the same x for which both P and Q are true. Individually P might 

be true for some x and Q might be true for a different x. That does not mean ꓯ an x for which 

both P and Q property are true and which is happening in this case. So this is not a correct 

statement. What about the part b is the implication in the reverse direction. It says that if you are 

given that ꓯ some x value in the domain for which both property P and property Q are true. 

 

Then you can conclude that individually the property P and Q are true for some value in the 

domain. So we can prove this and the way we prove this is as follows. So since you are given, so 

to prove that this implication is true, we have to show that if I assume left hand side is true, then 

I have to show that the right hand side is also true. Because for all other cases an implication 

always turns out to be true that means by false implies anything is true and so on.  

 

So assume your left hand side is true, that means there exists some x value in the domain for 

which both property P and Q are true. I do not know the exact value of that x, because my 

domain could be very large. But I can say that that element x for which the left hand side is true 

can be represented by c. So this is your existential instantiation. So I know that proposition P(c) 

is true as well as the proposition Q(c) is true. I stress the value of c is not known here. 

  

It is an arbitrary element, but it exists. Now since the conjunction of the two propositions P(c)   

and Q(c) is given to be true. This is possible only if the individual propositions P(c) and Q(c) are 

true. And if the proposition P(c) is true, that means I can say that existential quantification, 

ꓯ P(x) is true. And in the same way since the proposition Q(c) is true, I can say that the 

existential quantification ꓯ Q(x) is true.  
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Both of them are true, that means the right hand side is true. That means assuming left hand side 

to be true I can conclude the right hand side is true and hence this identity is a correct identity.  

(Refer Slide Time: 16:35) 

 

The 5 question is a very interesting question. It asks you to show that there are infinitely many 

prime numbers and there are several interesting proofs possible for this statement, let me show 

one of them. So I am trying here a proof by contradiction. So that the statement I want to prove is 

there are infinitely many primes but I assume a contradictory statement that there are only a 

finite number of primes. 

 

Say n number of primes, n could be anything it could be 2, 3 or 4 anything. Now what I do is I 

define a new number Q which is the product of my finite number of primes, which I am 

assuming to exist plus 1. Now what can I say about the number Q. There can be 2 possible cases. 

Now, I apply the proof by cases here. My Q could be a prime number itself, my Q could be a 

composite number and there cannot be any third case possible with respect to Q. 

  

It turns out that, if Q is a prime number, then definitely Q is different from all your numbers 

prime numbers P1, P2, Pn that are the only prime numbers you assumed to exist. That means now 

you have found a new prime number. That means your listing of P1 to Pn is not an exhaustive 

listing of all the prime numbers that exist. So you got a contradiction. Whereas it might be 

possible that Q is a composite number.  
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If Q is a composite number I can show that none of these prime numbers P1, P2, Pn will be a 

factor of Q. None of them will divide Q. On contrary, assume say for instance P1 divides your 

number Q. Now, if P1 divides Q, that means P1 is a factor of Q, and we know that P1 is a factor 

of the product of P1 to Pn, because that has P1 in it. So that means you have now a number P1, a 

prime number P1 which divides both Q as well as the product of P1 to Pn.  

 

That means it will divide the difference of Q and the product of P1 to Pn. But the difference of Q 

and the product of P1 to Pn is 1. That means P1 divides 1. But that is not possible because P1 is at 

least 2, because you are assuming that P1 to Pn are primes and a smallest prime that is possible is 

2. And 2 cannot divide 1. That means we have shown here that P1 cannot divide your number Q. 

In the same way we can show that P2 does not divide Q.  

 

In the same way we can show that Pi also does not divide Q. And in the same way I can show 

that Pn does not divide Q. But Q definitely has a prime factor because that comes from my 

fundamental theorem of arithmetic you take any number it can be expressed as product of prime 

powers. That means it has definitely one prime factor, say P. But at the same time I am showing 

that P cannot be P1, it cannot be P2, it cannot be Pn.  

 

That again shows that I am missing a prime number P in my listing of prime number. That means 

my list of prime numbers P1 to Pn which I assumed is not the complete list. So that is a 

contradiction I will get in case 2. It turns out that very often students just give the following 

argument which is an incorrect argument. They say that for surety since Q is not divisible by P1, 

since Q is not divisible by P1, Q is not divisible by P2, Q is not divisible by Pn. 

 

They end up with the conclusion that Q is definitely prime. That is not correct, let me 

demonstrate that. Imagine that these are the only prime numbers which you assume to exist. Now 

your Q in this case will be the product of all these prime numbers plus 1. And as per your 

argument Q should be always prime, because it is not divisible by 2, it is not divisible by 3, it is 

not divisible by 5, not divisible by 7, not divisible by 11 and 13. 
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But it turns out that Q is composite here, where the prime factors of this composite Q are 59 and 

509. And these are the 2 primes which are not there because missing from your list of exhaustive 

prime numbers, which you are assuming to exist. And that is why in case 2 we cannot simply 

stop with the argument that Q is also a new prime number which I am finding because it is not 

divisible by P1, P2, Pn. 

 

The correct argument is that we will show that Q will have at least 1 prime factor, which is not 

present in the list of prime numbers, which I am assuming to exist which is demonstrated by this 

example.  

(Refer Slide Time: 22:32) 

 

Now, let us see question number 6 and 7 together.  We will first equation number 6 and the 

solution of question 6 will be used for question number 7. The question 6 says you have to prove 

that there exists at least one real number among a set of n real numbers which is greater than 

equal to their average. I stress here that a1 to an are arbitrary here. You cannot show concrete 

values of a1 to an and prove this statement for those concrete values and conclude that this 

statement is true. 

  

This is a universally quantified statement. So how do we prove it? We have to take arbitrary 

values of a1 to an and prove the statement with respect to those arbitrarily chosen values of a1 to 

an. What we do here is we give proof by contradiction. So our goal is to prove that average of a1 
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to an is less than equal to some ai. But instead, I assume that each of the individual numbers 

among these n numbers is less than their average. 

  

That means the first number is less than their average. The second number is less than the 

average of the n numbers and similarly the last number is less than the average of the n numbers. 

That is a contradiction. Now if I add this n equations I get this inequality. And if I substitute the 

value of the average by this formula I come to the conclusion that the summation of n numbers is 

less than the summation of n numbers which is not possible which is a contradiction. 

 

That means assuming this contradiction leads to a false conclusion that means the statement is a 

true statement. That means you take any n real numbers, any n arbitrary real numbers, they could 

be positive, negative, they may be the same, different. At least one of them will be greater than 

or equal to their average. Based on this I want to solve question 7. In question 7, you are given 

the following. 

 

You are given the numbers 1 to 10 which are placed around the circle in any arbitrary order. 

Maybe in ascending order, descending order, maybe the odd numbers first, next even numbers 

and so on. So the order is not given. It is an arbitrary order. And the question says that it does not 

matter in what order you arrange the numbers 1 to 10, there always exist 3 integers in that 

arrangement which will be in consecutive locations. 

 

Such that the sum of those three numbers will be greater than or equal to 17. So I stress here this 

is with respect to any arbitrary arrangement of the numbers 1 to 10. So pictorially, you can 

imagine that you are given this arbitrary circular ordering of 1 to 10 where, a1 can be any number 

from 1 to 10, a2 could be any number from 1 to 10 and so on. I have to show that once I freeze 

this arbitrary ordering. 

 

In this arbitrary ordering, there exist collections of 3 integers, in 3 locations such that their sum is 

greater than equal to 17. And I want to take the help of question number 6, whatever I have 

proved in question number 6. So what I do here is since the question involves sum of 3 numbers 
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what I do here is once I freeze this circular arrangement of 1 to 10, I take the following sums, I 

take the sum of first 3 numbers namely a1, a2, a3.  

 

That is my S1. In the same way, I take the sum of next 3 numbers namely a2, a3, a4. I call it S2. I 

take the sum of a3, a4, a5 that I call it as S3 and in the same way I take the sum of a10, a1, a2, that 

will be my last sum namely S10. And what is my goal? The question says that either S1 is greater 

than equal to 17 or S2 is greater than equal to 17 or sum Si is greater than equal to 17. That is 

what I want to prove here.  

 

Because I have taken the different possible sum of 3 consecutive numbers in this circular 

arrangement. Now what I can do here is I can interpret S1, S2 up to S10 as 10 possible values. 

That means let n = 10. Now, what can be what will be the average of these sums S1, S2, S10. It 

does not matter what are the values in your circular arrangement. If you take the average of these 

10 sum values, then in the denominator, you will have 10. Because n is 10 but when you take the 

sum of S1 up to S10 each number in this arrangement will occur three times because a1 will be 

occurring in S1. a1 will be occurring in S10 and a1 will be also occurring in S9.  

 

In the same way, a2 will be occurring in S2, it will be occurring in S3 and S4, and so on. So each 

of this value a1 to a10 will be occurring thrice when you take the average and when taking the 

average you will be adding S1 to S10. And if my claim here is if you add S1 to S10 each of this 

value say a1 to a10 will be occurring thrice. And possible values of a1 to a10 each of them belong 

to 1 to 10 and only once they occur.  

 

That means i know that if you add the value say a 1 to a 10 you are basically adding the numbers 

1 to 10. And the summation of the numbers 1 to 10 is nothing but 55. That means I know that it 

does not matter in what order the numbers are arranged. If I define sums like this and take the 

average it will be 16.5. And from previous question I know that either S1 is greater than equal to 

the average of S1 to S10 or S2 is greater than equal to the average of S1 to S10 and so on.  

 

That means at least one Si is there which is greater than equal to 16.5. And each Si is an integer 

because Si, S1 is the summation of three integers S2 is the summation of three integers. In the 
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same way, S10 is the summation of three integers, so each Si is an integer. So what is the smallest 

integer, which is greater than equal to 16.5, well it is 17. So that shows that either S1 is equal to 

17 or S2 is 17 and so on. So that solves your question number 7. 
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